Skip to main content

Advertisement

Log in

Single-subject classification of schizophrenia using event-related potentials obtained during auditory and visual oddball paradigms

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

In the search for the biomarkers of schizophrenia, event-related potential (ERP) deficits obtained by applying the classic oddball paradigm are among the most consistent findings. However, the single-subject classification rate based on these parameters remains to be determined. Here, we present a data-driven approach by applying machine learning classifiers to relevant oddball ERPs. Twenty-four schizophrenic patients and 24 matched healthy controls finished auditory and visual oddball tasks while high-density electrophysiological recordings were applied. The N1 component in response to standards and target as well as the P3 component following targets were submitted to different machine learning algorithms and the resulting ERP features were submitted to further correlation analyses. We obtained a classification accuracy of 72.4 % using only two ERP components. Latencies of parietal N1 components to visual standard stimuli at electrode positions Pz and P1 were sufficient for classification. Further analysis revealed a high correlation of these features in controls and an intermediate correlation in schizophrenia patients. These data exemplarily show how automated inference may be applied to classify a pathological state in single subjects without prior knowledge of their diagnoses and illustrate the potential of machine learning algorithms for the identification of potential biomarkers. Moreover, this approach assesses the discriminative accuracy of one of the most consistent findings in schizophrenia research by means of single-subject classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sponheim SR, Iacono WG, Thuras PD, Beiser M (2001) Using biological indices to classify schizophrenia and other psychotic disorders. Schizophr Res 50:139–150

    Article  PubMed  CAS  Google Scholar 

  2. Carter JW, Schulsinger F, Parnas J, Cannon T, Mednick SA (2002) A multivariate prediction model of schizophrenia. Schizophr Bull 28:649–682

    Article  PubMed  Google Scholar 

  3. Braff DL (1993) Information processing and attention dysfunctions in schizophrenia. Schizophr Bull 19:233–259

    Article  PubMed  CAS  Google Scholar 

  4. Turetsky BI, Colbath EA, Gur RE (1998) P300 subcomponent abnormalities in schizophrenia: II. Longitudinal stability and relationship to symptom change. Biol Psychiatry 43:31–39

    Article  PubMed  CAS  Google Scholar 

  5. Bramon E, Rabe-Hesketh S, Sham P, Murray RM, Frangou S (2004) Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophr Res 70:315–329

    Article  PubMed  Google Scholar 

  6. Polich J, Ladish C, Bloom FE (1990) P300 assessment of early Alzheimer’s disease. Electroencephalogr Clin Neurophysiol 77:179–189

    Article  PubMed  CAS  Google Scholar 

  7. Hesselbrock V, Begleiter H, Porjesz B, O’Connor S, Bauer L (2001) P300 event-related potential amplitude as an endophenotype of alcoholism-evidence from the collaborative study on the genetics of alcoholism. J Biomed Sci 8:77–82

    PubMed  CAS  Google Scholar 

  8. Gangadhar BN, Ancy J, Janakiramaiah N, Umapathy C (1993) P300 amplitude in non-bipolar, melancholic depression. J Affect Disord 28:57–60

    Article  PubMed  CAS  Google Scholar 

  9. Salisbury DF, Shenton ME, McCarley RW (1999) P300 topography differs in schizophrenia and manic psychosis. Biol Psychiatry 45:98–106

    Article  PubMed  CAS  Google Scholar 

  10. Butler PD, Martinez A, Foxe JJ, Kim D, Zemon V, Silipo G, Mahoney J, Shpaner M, Jalbrzikowski M, Javitt DC (2007) Subcortical visual dysfunction in schizophrenia drives secondary cortical impairments. Brain 130:417–430

    Article  PubMed  Google Scholar 

  11. Haenschel C, Bittner RA, Haertling F, Rotarska-Jagiela A, Maurer K, Singer W, Linden DEJ (2007) Contribution of impaired early-stage visual processing to working memory dysfunction in adolescents with schizophrenia: a study with event-related potentials and functional magnetic resonance imaging. Arch Gen Psychiatry 64:1229–1240

    Article  PubMed  Google Scholar 

  12. Yeap S, Kelly SP, Sehatpour P, Magno E, Javitt DC, Garavan H, Thakore JH, Foxe JJ (2006) Early visual deficits as endophenotypes for schizophrenia: high-density electrical mapping in clinically unaffected first-degree relatives. Arch Gen Psychiatry 63:1180–1188

    Article  PubMed  Google Scholar 

  13. First MB, Spitzer RL, Gibbon M, Williams JBW (2001) Structured clinical interview for DSM-IV-TR axis I disorders—non-patient edition. New York State Psychiatric Institute, New York

    Google Scholar 

  14. Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ (2000) Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin Neurophysiol 111:1745–1758

    Article  PubMed  CAS  Google Scholar 

  15. Guyon I, Gunn S, Nikravesh M, Zadeh LA (2006) Feature extraction: foundations and applications. Springer, Berlin

    Book  Google Scholar 

  16. Benjamini Y, Yekutieli D (2001) The control of false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  17. Mahalanobis PC (1936) On the generalised distance in statistics. Proc Natl Inst Sci India 2:49–55

    Google Scholar 

  18. Vapnik VN (1998) Statistical learning theory. Wiley, New York

    Google Scholar 

  19. Sehatpour P, Dias EC, Butler PD, Revheim N, Guilfoyle DN, Foxe JJ, Javitt D (2010) Impaired visual object processing across an occipital-frontal-hippocampal brain network in schizophrenia. Arch Gen Psychiatry 67:772–782

    Article  PubMed  Google Scholar 

  20. Turetsky BI, Greenwood TA, Olincy A, Radant AD, Braff DL, Cadenhead KS, Dobie DJ, Freedman R, Green MF, Gur RE, Gur RC, Light GA, Mintz J, Nuechterlein KH, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang DW, Tsuang MT, Calkins ME (2008) Abnormal auditory N100 amplitude: a heritable endophenotype in first-degree relatives of schizophrenia probands. Biol Psychiatry 64:1051–1059

    Article  PubMed  Google Scholar 

  21. Mulert C, Gallinat J, Pascual-Marqui R, Dorn H, Frick K, Schlattmann P, Mientus S, Herrmann WM, Winterer G (2001) Reduced event-related current density in the anterior cingulate cortex in schizophrenia. Neuroimage 13:589–600

    Article  PubMed  CAS  Google Scholar 

  22. Iyer D, Zouridakis G (2008) Single-trial analysis of the auditory N100 improves separation of normal and schizophrenic subjects. In: Proceedings of the 30th annual international IEEE EMBS conference, Vancouver, British Columbia, Canada, 20–24 Aug, pp 3840–3843

  23. Neuhaus AH, Popescu F, Grozea C, Urbanek C, Hahn E, Hahn C, Opgen-Rhein C, Urbanek C, Dettling M (2011) Single-subject classification of schizophrenia by event-related potentials during selective attention. Neuroimage 55:514–521

    Article  PubMed  Google Scholar 

  24. Winterer G, Ziller M, Dorn H, Frick K, Mulert C, Wuebben Y, Herrmann WM (2000) Frontal dysfunction in schizophrenia—a new electrophysiological classifier for research and clinical applications. Eur Arch Psychiatry Clin Neurosci 250:207–214

    Article  PubMed  CAS  Google Scholar 

  25. Zilles D, Gruber E, Falkai P, Gruber O (2011) Patients with schizophrenia show deficits of working memory maintenance components in circuit-specific tasks. Eur Arch Psychiatry Clin Neurosci 260:519–525

    Article  Google Scholar 

  26. Montag C, Neuhaus K, Lehmann A, Krueger K, Dziobek I, Heekeren HR, Heinz A, Gallinat J (2012) Subtle deficits of theory of mind in unaffected first-degree relatives of schizophrenia patients. Eur Arch Psychiatry Clin Neurosci 262:217–262

    Article  PubMed  Google Scholar 

  27. Haker H, Rössler W (2009) Empathy in schizophrenia: impaired resonance. Eur Arch Psychiatry Clin Neurosci 259:352–361

    Article  PubMed  Google Scholar 

  28. Derntl B, Habel U (2011) Deficits in social cognition: a marker for psychiatric disorders? Eur Arch Psychiatry Clin Neurosci 261:S145–S149

    Article  PubMed  Google Scholar 

  29. Caan MWA, Vermeer KA, van Vliet LJ, Majoie CBLM, Peters BD, den Heeten GJ, Vos FM (2006) Shaving diffusion tensor images in discriminant analysis: a study into schizophrenia. Med Image Anal 10:841–849

    Article  PubMed  CAS  Google Scholar 

  30. Takayanagi Y, Kawasaki Y, Nakamura K, Takahashi T, Orikabe L, Toyoda E, Mozue Y, Sato Y, Itokawa M, Yamasue H, Kasai K, Kurachi M, Okazaki Y, Matsushita M, Suzuki M (2010) Differentiation of first-episode schizophrenia patients from healthy controls using ROI-based multiple structural brain variables. Progr Neuropsychopharmacol Biol Psychiatry 34:10–17

    Article  Google Scholar 

  31. Davatzikos C, Shen D, Gur RC, Wu X, Liu D, Fan Y, Hughett P, Turetsky BI, Gur RE (2005) Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities. Arch Gen Psychiatry 62:1218–1227

    Article  PubMed  Google Scholar 

  32. Pardo PJ, Georgopoulos AP, Kenny JT, Stuve TA, Findling RL, Schulz SC (2006) Classification of adolescent psychotic disorders using linear discriminant analysis. Schizophr Res 87:297–306

    Article  PubMed  Google Scholar 

  33. Kawasaki Y, Suzuki M, Kherif F, Takahashi T, Zhou SY, Nakamura K, Matsui M, Sumiyoshi T, Seto H, Kurachi M (2007) Multivariate voxel-based morphometry successfully differentiates schizophrenia patients from healthy controls. Neuroimage 34:235–242

    Article  PubMed  Google Scholar 

  34. Yoon U, Lee JM, Im K, Shin YW, Cho BH, Kim IY, Kwon JS, Kim SI (2007) Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia. Neuroimage 34:1405–1415

    Article  PubMed  Google Scholar 

  35. Cecchi G, Rish I, Thyreau B, Thirion B, Plaze M, Paillerre-Martinot ML, Martelli C, Martinot JL, Poline JB (2009) Discriminative network models of schizophrenia. In: Bengio Y, Schuurmans D, Lafferty J, Williams CKI, Culotta A (eds) Advances in neural information processing systems. Proceedings of the 22th NIPS conference, Vancouver, British Columbia, Canada, 7–10 Dec. Available online at http://books.nips.cc/nips22.html

  36. Castro E, Martinez-Ramon M, Pearlson G, Sui J, Calhoun VD (2011) Characterization of groups using composite kernels and multi-source fMRI analysis data: application to schizophrenia. Neuroimage 58:526–536

    Article  PubMed  Google Scholar 

  37. Ardekani BA, Tabesh A, Sevy S, Robinson DG, Bilder RM, Szeszko PR (2011) Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers. Hum Brain Mapp 32:1–9

    Article  PubMed  Google Scholar 

  38. Lanterman AD (2001) Schwarz, Wallace, and Rissanen: intertwining themes in theories of model selection. Int Stat Rev 69:185–212

    Article  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres H. Neuhaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuhaus, A.H., Popescu, F.C., Bates, J.A. et al. Single-subject classification of schizophrenia using event-related potentials obtained during auditory and visual oddball paradigms. Eur Arch Psychiatry Clin Neurosci 263, 241–247 (2013). https://doi.org/10.1007/s00406-012-0326-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-012-0326-7

Keywords

Navigation