Skip to main content
Log in

Case–control association study for 10 genes in patients with schizophrenia: influence of 5HTR1A variation rs10042486 on schizophrenia and response to antipsychotics

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate possible associations between a set of single-nucleotide polymorphisms (SNPs) within 10 genes with Schizophrenia (SCZ) and response to antipsychotics in Korean in-patients treated with antipsychotics. Two hundred and twenty-one SCZ in-patients and 170 psychiatrically healthy controls were genotyped for 42 SNPs within ABCB1, ABCB4, TAP2, CLOCK, CPLX1, CPLX2, SYN2, NRG1, 5HTR1A and GPRIN2. Baseline and final clinical measures, including the Positive and Negative Symptoms Scale (PANSS), were recorded. Rs10042486 within 5HTR1A was associated with both SCZ and clinical improvement on PANSS total scores as well as on PANSS positive and PANSS negative scores. The haplotype analyses focusing on the four, three and two blocks’ haplotypes within 5HTR1A confirmed such findings as well. We did not observe any significant association between the remaining genetic variants under investigation in this study and clinical outcomes. Our preliminary findings suggest that rs10042486 within 5HTR1A promoter region could be associated with SCZ and with clinical improvement on PANSS total, positive and negative scores in Korean patients with SCZ. However, taking into account the several limitations of our study, further research is needed to draw more definitive conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Freedman R (2003) Schizophrenia. N Engl J Med 349:1738–1749

    Article  PubMed  CAS  Google Scholar 

  2. WHO (2001) World Health Report 2001. Mental health—new understanding—new hope. World Health Organisation, Geneva

    Google Scholar 

  3. Schlossberg K, Massler A, Zalsman G (2010) Environmental risk factors for psychopathology. Isr J Psychiatry Relat Sci 47:139–143

    PubMed  Google Scholar 

  4. McGuffin P, Owen M (1991) The molecular genetics of schizophrenia: an overview and forward view. Eur Arch Psychiatry Clin Neurosci 240:169–173

    Article  PubMed  CAS  Google Scholar 

  5. McGuffin P, Owen MJ, Farmer AE (1995) Genetic basis of schizophrenia. Lancet 346:678–682

    Article  PubMed  CAS  Google Scholar 

  6. Kringlen E (2000) Twin studies in schizophrenia with special emphasis on concordance figures. Am J Med Genet 97:4–11

    Article  PubMed  CAS  Google Scholar 

  7. Ghosh A, Chakraborty K, Mattoo SK (2011) Newer molecules in the treatment of schizophrenia: a clinical update. Indian J Pharmacol 43:105–112

    Article  PubMed  CAS  Google Scholar 

  8. Norton N, Williams HJ, Owen MJ (2006) An update on the genetics of schizophrenia. Curr Opin Psychiatry 19:158–164

    Article  PubMed  Google Scholar 

  9. Roth BL, Hanizavareh SM, Blum AE (2004) Serotonin receptors represent highly favorable molecular targets for cognitive enhancement in schizophrenia and other disorders. Psychopharmacol (Berl) 174:17–24

    Article  CAS  Google Scholar 

  10. Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41:237–260

    Article  PubMed  CAS  Google Scholar 

  11. Krystal JH, D’Souza DC, Mathalon D, Perry E, Belger A, Hoffman R (2003) NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacol (Berl) 169:215–233

    Article  CAS  Google Scholar 

  12. Marco N, Thirion A, Mons G, Bougault I, Le Fur G, Soubrie P, Steinberg R (1998) Activation of dopaminergic and cholinergic neurotransmission by tachykinin NK3 receptor stimulation: an in vivo microdialysis approach in guinea pig. Neuropeptides 32:481–488

    Article  PubMed  CAS  Google Scholar 

  13. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59(Suppl 20):22–33 quiz 34–57

    PubMed  Google Scholar 

  14. Serretti A, Chiesa A, Porcelli S, Han C, Patkar AA, Lee SJ, Park MH, Pae CU (2011) Influence of TPH2 variants on diagnosis and response to treatment in patients with major depression, bipolar disorder and schizophrenia. Psychiatry Res 189(1):26–32

    Google Scholar 

  15. Pae CU, Chiesa A, Mandelli L, Serretti A (2010) No influence of DTNBP1 polymorphisms on the response to aripiprazole. Neuropsychobiology 62:245–249

    Article  PubMed  CAS  Google Scholar 

  16. Kay SR, Fiszbein A, Vital-Herne M, Fuentes LS (1990) The positive and negative syndrome Scale–Spanish adaptation. J Nerv Ment Dis 178:510–517

    PubMed  CAS  Google Scholar 

  17. Leucht S, Davis JM, Engel RR, Kane JM, Wagenpfeil S (2007) Defining ‘response’ in antipsychotic drug trials: recommendations for the use of scale-derived cutoffs. Neuropsychopharmacology 32:1903–1910

    Article  PubMed  CAS  Google Scholar 

  18. StatSoft I (1995) STATISTICA per Windows. StatSoft Italia srl

  19. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  PubMed  CAS  Google Scholar 

  20. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125:279–284

    Article  PubMed  CAS  Google Scholar 

  21. Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  22. Lesch KP, Gutknecht L (2004) Focus on The 5-HT1A receptor: emerging role of a gene regulatory variant in psychopathology and pharmacogenetics. Int J Neuropsychopharmacol 7:381–385

    Article  PubMed  CAS  Google Scholar 

  23. Blier P, de Montigny C (1987) Modification of 5-HT neuron properties by sustained administration of the 5-HT1A agonist gepirone: electrophysiological studies in the rat brain. Synapse 1:470–480

    Article  PubMed  CAS  Google Scholar 

  24. Gray L, Scarr E, Dean B (2006) Serotonin 1a receptor and associated G-protein activation in schizophrenia and bipolar disorder. Psychiatry Res 143:111–120

    Article  PubMed  CAS  Google Scholar 

  25. Lopez-Figueroa AL, Norton CS, Lopez-Figueroa MO, Armellini-Dodel D, Burke S, Akil H, Lopez JF, Watson SJ (2004) Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia. Biol Psychiatry 55:225–233

    Article  PubMed  CAS  Google Scholar 

  26. Mossner R, Schuhmacher A, Kuhn KU, Cvetanovska G, Rujescu D, Zill P, Quednow BB, Rietschel M, Wolwer W, Gaebel W, Wagner M, Maier W (2009) Functional serotonin 1A receptor variant influences treatment response to atypical antipsychotics in schizophrenia. Pharmacogenet Genomics 19:91–94

    Article  PubMed  Google Scholar 

  27. Reynolds GP, Arranz B, Templeman LA, Fertuzinhos S, San L (2006) Effect of 5-HT1A receptor gene polymorphism on negative and depressive symptom response to antipsychotic treatment of drug-naive psychotic patients. Am J Psychiatry 163:1826–1829

    Article  PubMed  Google Scholar 

  28. Kato M, Fukuda T, Wakeno M, Okugawa G, Takekita Y, Watanabe S, Yamashita M, Hosoi Y, Azuma J, Kinoshita T, Serretti A (2009) Effect of 5-HT1A gene polymorphisms on antidepressant response in major depressive disorder. Am J Med Genet B Neuropsychiatr Genet 150B:115–123

    Article  PubMed  CAS  Google Scholar 

  29. Fellerhoff B, Wank R (2009) Transporter associated with antigen processing and the chaperone tapasin: are non-classical HLA genes keys to the pathogenesis of schizophrenia? Med Hypotheses 72:535–538

    Article  PubMed  CAS  Google Scholar 

  30. Takao T, Tachikawa H, Kawanishi Y, Mizukami K, Asada T (2007) CLOCK gene T3111C polymorphism is associated with Japanese schizophrenics: a preliminary study. Eur Neuropsychopharmacol 17:273–276

    Article  PubMed  CAS  Google Scholar 

  31. Zhang J, Liao G, Liu C, Sun L, Liu Y, Wang Y, Jiang Z, Wang Z (2011) The association of CLOCK gene T3111C polymorphism and hPER3 gene 54-nucleotide repeat polymorphism with Chinese Han people schizophrenics. Mol Biol Rep 38:349–354

    Article  PubMed  CAS  Google Scholar 

  32. Kishi T, Kitajima T, Ikeda M, Yamanouchi Y, Kinoshita Y, Kawashima K, Okochi T, Okumura T, Tsunoka T, Inada T, Ozaki N, Iwata N (2009) Association study of clock gene (CLOCK) and schizophrenia and mood disorders in the Japanese population. Eur Arch Psychiatry Clin Neurosci 259:293–297

    Article  PubMed  Google Scholar 

  33. Lamont EW, Coutu DL, Cermakian N, Boivin DB (2010) Circadian rhythms and clock genes in psychotic disorders. Isr J Psychiatry Relat Sci 47:27–35

    PubMed  Google Scholar 

  34. Chen Q, He G, Qin W, Chen QY, Zhao XZ, Duan SW, Liu XM, Feng GY, Xu YF, St Clair D, Li M, Wang JH, Xing YL, Shi JG, He L (2004) Family-based association study of synapsin II and schizophrenia. Am J Hum Genet 75:873–877

    Article  PubMed  CAS  Google Scholar 

  35. Chen Q, He G, Wang XY, Chen QY, Liu XM, Gu ZZ, Liu J, Li KQ, Wang SJ, Zhu SM, Feng GY, He L (2004) Positive association between synapsin II and schizophrenia. Biol Psychiatry 56:177–181

    Article  PubMed  CAS  Google Scholar 

  36. Saviouk V, Moreau MP, Tereshchenko IV, Brzustowicz LM (2007) Association of synapsin 2 with schizophrenia in families of Northern European ancestry. Schizophr Res 96:100–111

    Article  PubMed  Google Scholar 

  37. Hall J, Whalley HC, Job DE, Baig BJ, McIntosh AM, Evans KL, Thomson PA, Porteous DJ, Cunningham-Owens DG, Johnstone EC, Lawrie SM (2006) A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nat Neurosci 9:1477–1478

    Article  PubMed  CAS  Google Scholar 

  38. Mata I, Perez-Iglesias R, Roiz-Santianez R, Tordesillas-Gutierrez D, Gonzalez-Mandly A, Vazquez-Barquero JL, Crespo-Facorro B (2009) A neuregulin 1 variant is associated with increased lateral ventricle volume in patients with first-episode schizophrenia. Biol Psychiatry 65:535–540

    Article  PubMed  CAS  Google Scholar 

  39. Sullivan PF (2007) Spurious genetic associations. Biol Psychiatry 61:1121–1126

    Article  PubMed  CAS  Google Scholar 

  40. Zimmerman M, Mattia JI, Posternak MA (2002) Are subjects in pharmacological treatment trials of depression representative of patients in routine clinical practice? Am J Psychiatry 159:469–473

    Article  PubMed  Google Scholar 

  41. Cavalli-Sforza LL (1994) The history and geography of human genes. Princeton University Press, New Jearsey

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Institute of Clinical Medicine Research of Bucheon St. Mary’s Hospital, Research Fund, 2011.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Un Pae.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 756 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crisafulli, C., Chiesa, A., Han, C. et al. Case–control association study for 10 genes in patients with schizophrenia: influence of 5HTR1A variation rs10042486 on schizophrenia and response to antipsychotics. Eur Arch Psychiatry Clin Neurosci 262, 199–205 (2012). https://doi.org/10.1007/s00406-011-0278-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-011-0278-3

Keywords

Navigation