Skip to main content
Log in

Midbrain dopamine D2/3 receptor binding in schizophrenia

  • ORIGINAL PAPER
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Several studies suggest that dysregulation of dopaminergic transmission in the midbrain and thalamus may contribute to the symptomatology of schizophrenia. The objective of this study was to examine the putative alteration of dopamine D2/3 receptor densities in the thalamus and midbrain of drug-naïve schizophrenic patients. We used the high-affinity single-photon emission tomography ligand [123I]epidepride for imaging D2/3 receptor binding sites in six neuroleptic-naïve schizophrenic patients, and seven healthy controls. Schizophrenic symptoms were evaluated by the Positive and Negative Syndrome Scale. Significantly lower D2/3 values were observed in the midbrain of patients with schizophrenia compared to controls (P = 0.02). No statistically significant difference was observed in the thalamus between two groups. Negative correlations were found between thalamic D2/3 receptor binding and general psychopathological schizophrenic symptoms (r from −0.78 to −0.92). These observations implicate altered dopaminergic activity in the midbrain of schizophrenic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lieberman JA, Kane JM, Alvir J (1987) Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology 91:415–433

    Article  PubMed  CAS  Google Scholar 

  2. Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D’Souza CD, Erdos J, McCance E, Rosenblatt W, Fingado C, Zoghbi SS, Baldwin RM, Seibyl JP, Krystal JH, Charney DS, Innis RB (1996) Single photon emission computerized tomography imaging of amphetamine induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 93:9235–9240

    Article  PubMed  CAS  Google Scholar 

  3. Moore H, West AR, Grace A (1999) The regulation of forebrain dopamine transmission: relevance to the pathophysiology and psychopathology of schizophrenia. Biol Psychiatry 46:40–55

    Article  PubMed  CAS  Google Scholar 

  4. Finlay JM (2001) Mesoprefrontal dopamine neurons and schizophrenia: role of developmental abnormalities. Schizophr Bull 27:431–442

    PubMed  CAS  Google Scholar 

  5. Wong DF, Wagner NH, Jr, Tune LE, Dannals RF, Pearlson GD, Links JM, Tamminga CA, Broussolle EP, Ravert HT, Wilson AA, Toung JKT, Malat J, Williams JA, O’Tuama LA, Snyder SH, Kuhar MJ, Gjedde A (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 234:1558–1563

    PubMed  CAS  Google Scholar 

  6. Hietala J, Syvälahti E, Vuorio K, Någren K, Lehikoinen P, Ruotsalainen U, Räkköläinen V, Lehtinen V, Wegelius U (1994) Striatal D2 dopamine receptor characteristics in neuroleptic-naive schizophrenic patients studied with positron emission tomography. Arch Gen Psychiatry 51:116–123

    PubMed  CAS  Google Scholar 

  7. Reith J, Benkenfat C, Sherwin A, Yasuhara Y, Kuwabara H, Andermann F, Bachneff S, Cumming P, Diksic M, Dyve SE, Etienne P, Evans AC, Lal S, Shevell M, Savard G, Wong DF, Chouinard G, Gjedde A (1994) Elevated dopa decarboxylase activity in living brain of patients with psychosis. Proc Natl Acad Sci USA 91:11651–11654

    Article  PubMed  CAS  Google Scholar 

  8. Hietala J, Syvälahti E, Vuorio K, Räkköläinen V, Bergman J, Haaparanta M, Solin O, Kuoppamäki M, Kirvelä O, Ruotsalainen U, Salokangas RKR (1995) Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients. Lancet 346:1130–1131

    Article  PubMed  CAS  Google Scholar 

  9. Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24

    Article  PubMed  CAS  Google Scholar 

  10. Okubo Y, Olsson H, Ito H, Lofti M, Suhara T, Halldin C, Farde L (1999) PET mapping of extrastriatal D2–like dopamine receptors in the human brain using an anatomic standardization technique and [11C]FLB 457. NeuroImage 10:666–674

    Article  PubMed  CAS  Google Scholar 

  11. Hurd YL, Suzuki M, Sedvall GC (2001) D1 and D2 dopamine receptor mRNA expression in whole hemisphere sectons of the human brain. J Chem Neuroanat 22:127–137

    Article  PubMed  CAS  Google Scholar 

  12. Meador-Woodruff JH, Damask SP, Watson SJ Jr (1994) Differential expression of auroreceptors in the ascending dopamine systems of the human brain. Proc Natl Acad Sci USA 91:8297–8301

    Article  PubMed  CAS  Google Scholar 

  13. Fletcher PC, Frith CD, Grasby PM, Friston KJ, Dolan RJ (1996) Local and distributed effects of apomorfine on fronto-temporal function in acute unmedicated schizophrenia. J Neurosci 16:7055–7062

    PubMed  CAS  Google Scholar 

  14. Goldsmith SK, Shapiro RM, Joyce JN (1997) Disrupted pattern of D2 dopamine receptors in the temporal lobe in schizophrenia. Arch Gen Psychiatry 54:649–658

    PubMed  CAS  Google Scholar 

  15. Akil M, Pierri JN, Whitehead RE, Edgar CL, Mohila C, Sampson AR, Lewis DA (1999) Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. Am J Psychiatry 156:1580–1589

    PubMed  CAS  Google Scholar 

  16. Andreasen NC (1999) A unitary model of schizophrenia. Arch Gen Psychiatry 56:781–787

    Article  PubMed  CAS  Google Scholar 

  17. Young KA, Manaye KF, Liang CL, Hicks PB, German DC (2000) Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia. Biol Psychiatry 47:944–953

    Article  PubMed  CAS  Google Scholar 

  18. Byne W, Buchsbaum MS, Kemether E, Hazlett EA, Shinwari A, Mitropoulou V, Siever LJ (2001) Magnetic resonance imaging of the thalamic mediodorsal nucleus and pulvinar in schizophrenia and schizotypal personality disorder. Arch Gen Psychiatry 58:133–140

    Article  PubMed  CAS  Google Scholar 

  19. Sabri O, Erkwoh R, Schreckenberger M, Owega A, Sass H, Buell U (1997) Correlation of positive symptoms exclusively to hyperperfusion or hypoperfusion of cerebral cortex in never-medicated schizophrenics. Lancet 349:1735–1739

    Article  PubMed  CAS  Google Scholar 

  20. Crespo-Facorro B, Paradiso S, Andreasen NC, O’Leary DS, Watkins GL, Boles Ponto LL, Hichwa RD (1999) Recalling word lists reveals “cognitive dysmetria” in schizophrenia: a positron emission tomography study. Am J Psychiatry 156:386–392

    Google Scholar 

  21. Heckers S, Curran T, Goff D, Rauch SL, Fischman AJ, Alpert NM, Schacter DL (2000) Abnormalities in the thalamus and prefrontal cortex during episodic object recognition in schizophrenia. Biol Psychiatry 48:651–657

    Article  PubMed  CAS  Google Scholar 

  22. Melchitzky DS, Lewis DA (2001) Dopamine transporter-immunoreactive axons in the mediodorsal thalamic nucleus of the macaque monkey. Neuroscience 103:1033–1042

    Article  PubMed  CAS  Google Scholar 

  23. Talvik M, Nordström AL, Olsson H, Halldin C, Farde L (2003) Decreased thalamic D2/D3 receptor binding in drug-naïve patients with schizophrenia: a PET study with [11C]FLB 457. Int J Neuropsychopharmacol 6:361–370

    Article  PubMed  CAS  Google Scholar 

  24. Yasuno F, Suhara T, Okubo Y, Sudo Y, Inoue M, Ichimiya T, Takano A, Nakayama K, Halldin C, Farde L (2004) Low dopamine d(2) receptor binding in subregions of the thalamus in schizophrenia. Am J Psychiatry 161:1016–1022

    Article  PubMed  Google Scholar 

  25. Tuppurainen H, Kuikka J, Viinamäki H, Husso-Saastamoinen M, Bergström K, Tiihonen J (2003) Extrastriatal dopamine D2/3 receptor density and distribution in drug-naïve schizophrenic patients. Mol Psychiatry 8:453–455

    Article  PubMed  CAS  Google Scholar 

  26. Spitzer RL, Williams JBW, Gibbon M, First MB (1994) The structured clinical interview for DSM-III-R (SCID) I: history, rationale and description. Arch Gen Psychiatry 49:624–629

    Google Scholar 

  27. Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13:261–276

    PubMed  CAS  Google Scholar 

  28. Kuikka JT, Åkerman KK, Hiltunen J, Bergström KA, Räsänen P, Vanninen E, Halldin C, Tiihonen J (1997) Striatal and extrastriatal imaging of dopamine D2 receptors in the living human brain with [123I]epidepride single-photon emission tomography. Eur J Nucl Med 24:483–487

    PubMed  CAS  Google Scholar 

  29. Talairach J, Tournoux P (1993) Referentially oriented cerebral MRI anatomy. Thieme Medical Publishers, Inc, New York

    Google Scholar 

  30. Seeman P, Bzowej NH, Guan HC, Bergeron C, Becker LE, Reynolds GP, Bird ED, Riederer P, Jellinger K, Watanebe S et al. (1987) Human brain dopamine receptors in children and aging adults. Synapse 1:399–404

    Article  PubMed  CAS  Google Scholar 

  31. Ichise M, Ballinger JR, Tanaka F, Moscovitch M, St. George-Hyslop PH, Raphael D, Freedman M (1998) Age-related changes in D2 receptor binding with iodine-123-iodobenzofuran SPECT. J Nucl Med 39:1511–1518

    PubMed  CAS  Google Scholar 

  32. Kaasinen V, Vilkman H, Hietala J, Någren K, Helenius H, Olsson H, Farde L, Rinne JO (2000) Age-related dopamine D2/D3 receptor loss in extrastriatal regions of the human brain. Neurobiol Aging 21:683–688

    Article  PubMed  CAS  Google Scholar 

  33. Cohen J (1977) Statistical power analysis for behavioral sciences. Academic Press Inc., Orlando, FL

    Google Scholar 

  34. Hall H, Farde L, Halldin C Hurd YL, Pauli S, Sedvall G (1996) Autoradiographic localization of extrastriatal D2–dopamine receptors in the human brain using [125I]epidepride. Synapse 23:115–123

    Article  PubMed  CAS  Google Scholar 

  35. Meador-Woodruff JH, Damask SP, Wang J, Haroutunian V, Davis KL, Watson SJ (1996) Dopamine receptor mRNA expression in human striatum and neocortex. Neuropsychopharmacology 15:17–29

    Article  PubMed  CAS  Google Scholar 

  36. Gatley SJ, Gifford AN, Carroll FI, Volkow ND (2000) Sensitivity of binding of high-affinity dopamine receptor radioligands to increased synaptic dopamine. Synapse 38:483–488

    Article  PubMed  CAS  Google Scholar 

  37. Kessler RM, Votaw JR, Schmidt DE, Ansari MS, Holdeman KP, de Paulis T, Clanton JA, Pfeffer R, Manning RG, Ebert MH (1993) High affinity dopamine D2 receptor radioligands. 3. [I123] and [I125]epidepride: in vivo studies in rhesus monkey brain and comparison with in vitro pharmacokinetics in rat brain. Life Sci 53:241–250

    Article  PubMed  CAS  Google Scholar 

  38. Okauchi T, Suhara T, Maeda J, Kawabe K, Ohbayashi S, Suzuki K (2001) Effect of endogenous dopamine on extrastriatal [11C]FLB 457 binding measured by PET. Synapse 41: 87–95

    Article  PubMed  CAS  Google Scholar 

  39. Fujita M, Verhoeff NPLG, Varrone A, Zoghbi SS, Baldwin RM, Jatlow PA, Anderson GM, Seibyl JP, Innis RB (2000) Imaging extrastriatal dopamine D2 receptor occupancy by endogenous dopamine in healthy humans. Eur J Pharmacol 387:179–188

    Article  PubMed  CAS  Google Scholar 

  40. Hagelberg N, Aalto S, Kajander J, Oikonen V, Hinkka S, Någren K, Hietala J, Scheinin H (2004) Alfentanil increases cortical dopamine D2/D3 receptor binding in healthy humans. Pain 109:86–93

    Article  PubMed  CAS  Google Scholar 

  41. Aalto S, Brück A, Laine M, Någren K, Rinne JO (2005) Frontal and temporal dopamine release during working memory and attention tasks in healthy humans: a positron emission tomography study using the high-affinity dopamine D2 receptor ligand [11C]FLB 457. J Neurosci 25:2471–2477

    Article  PubMed  CAS  Google Scholar 

  42. Suhara T, Okubo Y, Yasuno F, Sudo Y, Inoue M, Ichimiya T, Nakashima Y, Nakayama K, Tanada S, Suzuki K, Halldin C, Farde L (2002) Decreased dopamine D2 receptor binding in the anterior cingulate cortex in schizophrenia. Arch Gen Psychiatry 59:25–30

    Article  PubMed  CAS  Google Scholar 

  43. Murray AM, Ryoo HL, Gurevich E, Joyce JN (1994) Localization of dopamine D3 receptors to mesolimbic and D2 receptors to mesostriatal regions of human forebrain. Proc Natl Acad Sci USA 91:11271–11275

    Article  PubMed  CAS  Google Scholar 

  44. Gurevich E, Joyce JN (1999) Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsychopharmacology 20:60–80

    Article  PubMed  CAS  Google Scholar 

  45. Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R (1999) Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 46:56–72

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Research Council for Health of the Finnish Academy, an EVO grant from the Kuopio University Hospital, Annual EVO Financing from Niuvanniemi Hospital, and the Maire Taponen Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heli Tuppurainen MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuppurainen, H., Kuikka, J.T., Laakso, M.P. et al. Midbrain dopamine D2/3 receptor binding in schizophrenia. Eur Arch Psychiatry Clin Neurosci 256, 382–387 (2006). https://doi.org/10.1007/s00406-006-0649-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-006-0649-3

Keywords

Navigation