Skip to main content

Advertisement

Log in

Identifying the potential role of serum miR-20a as a biomarker for olfactory dysfunction in patients with Parkinson’s disease

  • Rhinology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Introduction

Olfactory dysfunction (OD), one of the most common non-motor symptoms in Parkinson’s disease (PD), is a cardinal prodromal symptom that can appear years before the onset of motor symptoms. Ongoing studies have demonstrated that microRNAs (miRNAs) are suitable biomarkers for PD, while there is a lack of robust miRNAs that can serve as markers for OD in PD.

Methods

The concordantly differentially expressed miRNAs (DE miRNAs) in the damaged olfactory system were first identified in 2 OD-related Gene Expression Omnibus (GEO) datasets. Then, they were verified in another PD-related GEO dataset and only one miRNA (miR-20a) was found to be significantly altered. Serum levels of miR-20a were further measured by qPCR in 79 PD patients with OD (PD-OD), 52 PD patients without OD (PD-NOD), and 52 healthy controls (HC). Objective measure of OD was defined by 16-item Sniffin’ Sticks odor identification test. All the participants underwent a demographic and comprehensive PD-related clinical assessment.

Results

Our results proved that miR-20a was significantly downregulated in PD-OD compared with PD-NOD and the area under curve (AUC) for OD detection by miR-20a was 0.803 (95% confidence interval, 0.724–0.883). In addition, PD-OD had higher scores of Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (UPDRS) II, Hoehn and Yahr stage (H–Y), Non-Motor Symptoms Scale (NMSS) 3, NMSS 5, NMSS 9, Hamilton Rating Scale for Depression (HAMD), Hamilton Anxiety Scale (HAMA), Activity of Daily Living (ADL), and lower scores of Mini-Mental State Examination (MMSE) and 39-item PD Quality of Life Questionnaire (PDQ-39) than PD-NOD. Binary regression model further presented that lower expressions of miR-20a and poorer cognitive function acted as promoting factors in the development of OD.

Conclusion

Our results suggest that miR-20a could be a novel biomarker for OD in PD and PD-OD patients tend to have higher disease stage, poorer motor aspects of experiences of daily living, worse cognitive scores, and inferior quality of life, and were more likely to have mental disorders. Cognitive function, in particular, is strongly associated with OD in PD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301

    Article  PubMed  Google Scholar 

  2. Bloem BR, Okun MS, Klein C (2021) Parkinson’s disease. Lancet 397(10291):2284–2303

    Article  CAS  PubMed  Google Scholar 

  3. Schapira AHV, Chaudhuri KR, Jenner P (2017) Non-motor features of Parkinson disease. Nat Rev Neurosci 18(7):435–450

    Article  CAS  PubMed  Google Scholar 

  4. Boesveldt S, Verbaan D, Knol DL et al (2008) A comparative study of odor identification and odor discrimination deficits in Parkinson’s disease. Mov Disord 23(14):1984–1990

    Article  PubMed  Google Scholar 

  5. Postuma RB, Berg D, Stern M et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12):1591–1601

    Article  PubMed  Google Scholar 

  6. Dan X, Wechter N, Gray S et al (2021) Olfactory dysfunction in aging and neurodegenerative diseases. Ageing Res Rev 70:101416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim JE, Oh E, Park J et al (2018) Serum 25-hydroxyvitamin D3 level may be associated with olfactory dysfunction in de novo Parkinson’s disease. J Clin Neurosci 57:131–135

    Article  CAS  PubMed  Google Scholar 

  8. Campolo J, De Maria R, Cozzi L et al (2016) Antioxidant and inflammatory biomarkers for the identification of prodromal Parkinson’s disease. J Neurol Sci 370:167–172

    Article  CAS  PubMed  Google Scholar 

  9. Ibarretxe-Bilbao N, Junque C, Marti MJ et al (2010) Olfactory impairment in Parkinson’s disease and white matter abnormalities in central olfactory areas: a voxel-based diffusion tensor imaging study. Mov Disord 25(12):1888–1894

    Article  PubMed  Google Scholar 

  10. Grillari J, Mäkitie RE, Kocijan R et al (2021) Circulating miRNAs in bone health and disease. Bone 145:115787

    Article  CAS  PubMed  Google Scholar 

  11. Wang H (2021) MicroRNAs, Parkinson's disease, and diabetes mellitus. Int J Mol Sci 22(6):2953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goh SY, Chao YX, Dheen ST et al (2019) Role of MicroRNAs in Parkinson’s disease. Int J Mol Sci 20(22):5649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cressatti M, Juwara L, Galindez JM et al (2020) Salivary microR-153 and microR-223 levels as potential diagnostic biomarkers of idiopathic Parkinson’s disease. Mov Disord 35(3):468–477

    Article  CAS  PubMed  Google Scholar 

  14. Li L, Ren J, Pan C et al (2021) Serum miR-214 serves as a biomarker for prodromal Parkinson’s disease. Front Aging Neurosci 13:700959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen Y, Gao C, Sun Q et al (2017) MicroRNA-4639 is a regulator of DJ-1 expression and a potential early diagnostic marker for Parkinson’s disease. Front Aging Neurosci 9:232

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang HQ, Wang JY, Li ZF et al (2021) DNA methyltransferase 1 is dysregulated in Parkinson’s disease via mediation of miR-17. Mol Neurobiol 58(6):2620–2633

    Article  CAS  PubMed  Google Scholar 

  17. Behbahanipour M, Peymani M, Salari M et al (2019) Expression profiling of blood microRNAs 885, 361, and 17 in the patients with the Parkinson’s disease: integrating interaction data to uncover the possible triggering age-related mechanisms. Sci Rep 9(1):13759

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mogilyansky E, Rigoutsos I (2013) The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 20(12):1603–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang S, Fang X, Liu M et al (2019) MiR-20b down-regulates intestinal ferroportin expression in vitro and in vivo. Cells 8(10):1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang Q, Wang Y, Zhou F et al (2021) MiR-20a-5p regulates MPP+-induced oxidative stress and neuroinflammation in HT22 cells by targeting IRF9/NF-κB axis. Evid Based Complement Alternat Med 2021:6621206

    PubMed  PubMed Central  Google Scholar 

  21. Chen W, Chen S, Kang WY et al (2012) Application of odor identification test in Parkinson’s disease in China: a matched case-control study. J Neurol Sci 316(1–2):47–50

    Article  PubMed  Google Scholar 

  22. Chen Y, Xu Q, Wu L et al (2023) REM sleep behavior disorder correlates with constipation in de novo Chinese Parkinson’s disease patients. Neurol Sci 44(1):191–197

    Article  PubMed  Google Scholar 

  23. Liu R, Umbach DM, Peddada SD et al (2015) Potential sex differences in nonmotor symptoms in early drug-naive Parkinson disease. Neurology 84(21):2107–2115

    Article  PubMed  PubMed Central  Google Scholar 

  24. Haehner A, Boesveldt S, Berendse HW et al (2009) Prevalence of smell loss in Parkinson’s disease–a multicenter study. Parkinsonism Relat Disord 15(7):490–494

    Article  CAS  PubMed  Google Scholar 

  25. Picillo M, Amboni M, Erro R et al (2013) Gender differences in non-motor symptoms in early, drug naïve Parkinson’s disease. J Neurol 260(11):2849–2855

    Article  PubMed  Google Scholar 

  26. Masala C, Solla P, Liscia A et al (2018) Correlation among olfactory function, motors’ symptoms, cognitive impairment, apathy, and fatigue in patients with Parkinson’s disease. J Neurol 265(8):1764–1771

    Article  PubMed  Google Scholar 

  27. Lee DH, Oh JS, Ham JH et al (2015) Is normosmic Parkinson disease a unique clinical phenotype? Neurology 85(15):1270–1275

    Article  CAS  PubMed  Google Scholar 

  28. Berendse HW, Roos DS, Raijmakers P et al (2011) Motor and non-motor correlates of olfactory dysfunction in Parkinson’s disease. J Neurol Sci 310(1–2):21–24

    Article  PubMed  Google Scholar 

  29. Dhawan V, Healy DG, Pal S et al (2006) Sleep-related problems of Parkinson’s disease. Age Ageing 35(3):220–228

    Article  CAS  PubMed  Google Scholar 

  30. Herting B, Schulze S, Reichmann H et al (2008) A longitudinal study of olfactory function in patients with idiopathic Parkinson’s disease. J Neurol 255(3):367–370

    Article  PubMed  Google Scholar 

  31. Ramjit AL, Sedig L, Leibner J et al (2010) The relationship between anosmia, constipation, and orthostasis and Parkinson’s disease duration: results of a pilot study. Int J Neurosci 120(1):67–70

    Article  CAS  PubMed  Google Scholar 

  32. Doty RL (2012) Olfaction in Parkinson’s disease and related disorders. Neurobiol Dis 46(3):527–552

    Article  PubMed  Google Scholar 

  33. Blonder LX, Slevin JT (2011) Emotional dysfunction in Parkinson’s disease. Behav Neurol 24(3):201–217

    Article  PubMed  PubMed Central  Google Scholar 

  34. Soudry Y, Lemogne C, Malinvaud D et al (2011) Olfactory system and emotion: common substrates. Eur Ann Otorhinolaryngol Head Neck Dis 128(1):18–23

    Article  CAS  PubMed  Google Scholar 

  35. Péron J, Dondaine T, Le Jeune F et al (2012) Emotional processing in Parkinson’s disease: a systematic review. Mov Disord 27(2):186–199

    Article  PubMed  Google Scholar 

  36. Seppi K, Ray Chaudhuri K, Coelho M et al (2019) Update on treatments for nonmotor symptoms of Parkinson’s disease–an evidence-based medicine review. Mov Disord 34(2):180–198

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fullard ME, Tran B, Xie SX et al (2016) Olfactory impairment predicts cognitive decline in early Parkinson’s disease. Parkinsonism Relat Disord 25:45–51

    Article  PubMed  PubMed Central  Google Scholar 

  38. Takeda A, Baba T, Kikuchi A et al (2014) Olfactory dysfunction and dementia in Parkinson’s disease. J Parkinsons Dis 4(2):181–187

    Article  PubMed  Google Scholar 

  39. Domellöf ME, Lundin KF, Edström M et al (2017) Olfactory dysfunction and dementia in newly diagnosed patients with Parkinson’s disease. Parkinsonism Relat Disord 38:41–47

    Article  PubMed  Google Scholar 

  40. Park JW, Kwon DY, Choi JH et al (2018) Olfactory dysfunctions in drug-naïve Parkinson’s disease with mild cognitive impairment. Parkinsonism Relat Disord 46:69–73

    Article  PubMed  Google Scholar 

  41. Bohnen NI, Albin RL (2011) The cholinergic system and Parkinson disease. Behav Brain Res 221(2):564–573

    Article  CAS  PubMed  Google Scholar 

  42. Bohnen NI, Kaufer DI, Hendrickson R et al (2006) Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurol 253(2):242–247

    Article  CAS  PubMed  Google Scholar 

  43. Williams-Gray CH, Evans JR, Goris A et al (2009) The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort. Brain 132(Pt 11):2958–2969

    Article  PubMed  Google Scholar 

  44. Kotagal V, Muller MT, Koeppe RA et al (2009) Parkinson and Alzheimer-selective hyposmia measures have different neurochemical substrates in patients with Parkinson’s disease. Neurology 72(suppl 3):A146

    Google Scholar 

  45. Aarsland D, Batzu L, Halliday GM et al (2021) Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers 7(1):47

    Article  PubMed  Google Scholar 

  46. Kawasaki I, Baba T, Takeda A et al (2016) Loss of awareness of hyposmia is associated with mild cognitive impairment in Parkinson’s disease. Parkinsonism Relat Disord 22:74–79

    Article  PubMed  Google Scholar 

  47. Croy I, Nordin S, Hummel T (2014) Olfactory disorders and quality of life–an updated review. Chem Senses 39(3):185–194

    Article  PubMed  Google Scholar 

  48. Kang P, Kloke J, Jain S (2012) Olfactory dysfunction and parasympathetic dysautonomia in Parkinson’s disease. Clin Auton Res 22(4):161–166

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hurt CS, Alkufri F, Brown RG et al (2014) Motor phenotypes, medication and mood: further associations with impulsive behaviours in Parkinson’s disease. J Parkinsons Dis 4(2):245–254

    Article  PubMed  Google Scholar 

  50. Opara JA, Brola W, Leonardi M et al (2012) Quality of life in Parkinson’s disease. J Med Life 5(4):375–381

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all participants who contributed to this study. We express our sincere appreciation to the reviewers for their constructive comments.

Funding

This study was supported by the National Natural Science Foundation of China (Grant No. 81771258).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongrong Xie or Dongya Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

The studies involving human participants were reviewed and approved by the ethics committee of the Shanghai East hospital affiliated with Tongji University. The patients/participants provided their written informed consent to participate in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhao, H., Bao, Y. et al. Identifying the potential role of serum miR-20a as a biomarker for olfactory dysfunction in patients with Parkinson’s disease. Eur Arch Otorhinolaryngol 280, 4509–4517 (2023). https://doi.org/10.1007/s00405-023-08034-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-023-08034-5

Keywords

Navigation