Skip to main content
Log in

Audiological outcomes of robot-assisted cochlear implant surgery

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

The main objective of this study is to evaluate the short-term and long-term audiological outcomes in patients who underwent cochlear implantation with a robot-assisted system to enable access to the cochlea, and to compare outcomes with a matched control group of patients who underwent cochlear implantation with conventional access to the cochlea.

Methods

In total, 23 patients were implanted by robot-assisted cochlear implant surgery (RACIS). To evaluate the effectiveness of robotic surgery in terms of audiological outcomes, a statistically balanced control group of conventionally implanted patients was created. Minimal outcome measures (MOM), consisting of pure-tone audiometry, speech understanding in quiet and speech understanding in noise were performed pre-operatively and at 3 months, 6 months, 12 months and 2 years post-activation of the audioprocessor.

Results

There was no statistically significant difference in pure-tone audiometry, speech perception in quiet and speech perception in noise between robotically implanted and conventionally implanted patients pre-operatively, 3 months, 6 months, 12 months and 2 years post-activation. A significant improvement in pure-tone hearing thresholds, speech understanding in quiet and speech understanding in noise with the cochlear implant has been quantified as of the first measurements at 3 months and this significant improvement remained stable over a time period of 2 years for HEARO implanted patients.

Conclusion

Clinical outcomes in robot-assisted cochlear implant surgery are comparable to conventional cochlear implantation.

Clinicaltrails.gov trail registration numbers

NCT03746613 (date of registration: 19/11/2018), NCT04102215 (date of registration: 25/09/2019).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. World Health Organization (2021) World report on hearing. World Health Organization, Geneva

    Google Scholar 

  2. National Institute on Deafness and Other Communication Disorders (2021) Cochlear implants. https://www.nidcd.nih.gov/health/cochlear-implants. Accessed 22 September 2022

  3. Gaylor JM, Raman G, Chung M, Lee J, Rao M, Lau J, Poe DS (2013) Cochlear implantation in adults: a systematic review and meta-analysis. JAMA Otolaryngol Head Neck Surg 139:265–272. https://doi.org/10.1001/jamaoto.2013.1744

    Article  PubMed  Google Scholar 

  4. Djourno A, Eyries C (1957) Auditory prosthesis by means of a distant electrical stimulation of the sensory nerve with the use of an indwelt coiling. Presse Med 65:1417

    CAS  Google Scholar 

  5. Labadie RF, Balachandran R, Noble JH, Blachon GS, Mitchell JE, Reda FA, Dawant BM, Fitzpatrick JM (2014) Minimally invasive image-guided cochlear implantation surgery: first report of clinical implementation. Laryngoscope 124:1915–1922. https://doi.org/10.1002/lary.24520

    Article  PubMed  PubMed Central  Google Scholar 

  6. Williamson T, Gavaghan K, Gerber N, Weder S, Anschuetz L, Wagner F, Weisstanner C, Mantokoudis G, Caversaccio M, Weber S (2017) Population statistics approach for safety assessment in robotic cochlear implantation. Otol Neurotol 38:759–764. https://doi.org/10.1097/MAO.0000000000001357

    Article  PubMed  Google Scholar 

  7. Bell B, Gerber N, Williamson T, Gavaghan K, Wimmer W, Caversaccio M, Weber S (2013) In vitro accuracy evaluation of image-guided robot system for direct cochlear access. Otol Neurotol 34:1284–1290. https://doi.org/10.1097/MAO.0b013e31829561b6

    Article  PubMed  Google Scholar 

  8. Williamson T, Du X, Bell B, Coulson C, Caversaccio M, Proops D, Brett P, Weber S (2014) Mechatronic feasibility of minimally invasive, atraumatic cochleostomy. Biomed Res Int 2014:181624. https://doi.org/10.1155/2014/181624

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wimmer W, Venail F, Williamson T, Akkari M, Gerber N, Weber S, Caversaccio M, Uziel A, Bell B (2014) Semiautomatic cochleostomy target and insertion trajectory planning for minimally invasive cochlear implantation. Biomed Res Int 2014:596498. https://doi.org/10.1155/2014/596498

    Article  PubMed  PubMed Central  Google Scholar 

  10. Weber S, Gavaghan K, Wimmer W, Williamson T, Gerber N, Anso J, Bell B, Feldmann A, Rathgeb C, Matulic M, Stebinger M, Schneider D, Mantokoudis G, Scheidegger O, Wagner F, Kompis M, Caversaccio M (2017) Instrument flight to the inner ear. Sci Robot. https://doi.org/10.1126/scirobotics.aal4916

    Article  PubMed  PubMed Central  Google Scholar 

  11. Caversaccio M, Gavaghan K, Wimmer W, Williamson T, Anso J, Mantokoudis G, Gerber N, Rathgeb C, Feldmann A, Wagner F, Scheidegger O, Kompis M, Weisstanner C, Zoka-Assadi M, Roesler K, Anschuetz L, Huth M, Weber S (2017) Robotic cochlear implantation: Surgical procedure and first clinical experience. Acta Otolaryngol 137:447–454. https://doi.org/10.1080/00016489.2017.1278573

    Article  PubMed  Google Scholar 

  12. Caversaccio M, Wimmer W, Anso J, Mantokoudis G, Gerber N, Rathgeb C, Schneider D, Hermann J, Wagner F, Scheidegger O, Huth M, Anschuetz L, Kompis M, Williamson T, Bell B, Gavaghan K, Weber S (2019) Robotic middle ear access for cochlear implantation: first in man. PLoS ONE 14:e0220543. https://doi.org/10.1371/journal.pone.0220543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Topsakal V, Matulic M, Assadi MZ, Mertens G, Rompaey VV, Van de Heyning P (2020) Comparison of the surgical techniques and robotic techniques for cochlear implantation in terms of the trajectories toward the inner ear. J Int Adv Otol 16:3–7. https://doi.org/10.5152/iao.2020.8113

    Article  PubMed  PubMed Central  Google Scholar 

  14. O’Connell BP, Hunter JB, Haynes DS, Holder JT, Dedmon MM, Noble JH, Dawant BM, Wanna GB (2017) Insertion depth impacts speech perception and hearing preservation for lateral wall electrodes. Laryngoscope 127:2352–2357. https://doi.org/10.1002/lary.26467

    Article  PubMed  PubMed Central  Google Scholar 

  15. Buchman CA, Dillon MT, King ER, Adunka MC, Adunka OF, Pillsbury HC (2014) Influence of cochlear implant insertion depth on performance: a prospective randomized trial. Otol Neurotol 35:1773–1779. https://doi.org/10.1097/MAO.0000000000000541

    Article  PubMed  Google Scholar 

  16. Atturo F, Barbara M, Rask-Andersen H (2014) Is the human round window really round? An anatomic study with surgical implications. Otol Neurotol 35:1354–1360. https://doi.org/10.1097/MAO.0000000000000332

    Article  PubMed  Google Scholar 

  17. Topsakal V, Heuninck E, Matulic M, Tekin AM, Mertens G, Van Rompaey V, Galeazzi P, Zoka-Assadi M, van de Heyning P (2022) First study in men evaluating a surgical robotic tool providing autonomous inner ear access for cochlear implantation. Front Neurol 13:804507. https://doi.org/10.3389/fneur.2022.804507

    Article  PubMed  PubMed Central  Google Scholar 

  18. Caversaccio M, Mantokoudis G, Wagner F, Aebischer P, Weder S, Wimmer W (2022) Robotic cochlear implantation for direct cochlear access. J Vis Exp. https://doi.org/10.3791/64047

    Article  PubMed  Google Scholar 

  19. Lehnhardt E (1993) Intracochlear electrode placement facilitated by healon. Adv Otorhinolaryngol 48:62–64. https://doi.org/10.1159/000422559

    Article  CAS  PubMed  Google Scholar 

  20. Blamey P, Artieres F, Baskent D, Bergeron F, Beynon A, Burke E, Dillier N, Dowell R, Fraysse B, Gallego S, Govaerts PJ, Green K, Huber AM, Kleine-Punte A, Maat B, Marx M, Mawman D, Mosnier I, O’Connor AF, O’Leary S, Rousset A, Schauwers K, Skarzynski H, Skarzynski PH, Sterkers O, Terranti A, Truy E, Van de Heyning P, Venail F, Vincent C, Lazard DS (2013) Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants: an update with 2251 patients. Audiol Neurootol 18:36–47. https://doi.org/10.1159/000343189

    Article  PubMed  Google Scholar 

  21. Lazard DS, Vincent C, Venail F, Van de Heyning P, Truy E, Sterkers O, Skarzynski PH, Skarzynski H, Schauwers K, O’Leary S, Mawman D, Maat B, Kleine-Punte A, Huber AM, Green K, Govaerts PJ, Fraysse B, Dowell R, Dillier N, Burke E, Beynon A, Bergeron F, Baskent D, Artieres F, Blamey PJ (2012) Pre-, per- and postoperative factors affecting performance of postlinguistically deaf adults using cochlear implants: a new conceptual model over time. PLoS ONE 7:e48739. https://doi.org/10.1371/journal.pone.0048739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. KleinePunte A, Van de Heyning P (2013) Quality standards for minimal outcome measurements in adults and children. Cochlear Implants Int 14(Suppl 2):S39-42. https://doi.org/10.1179/1467010013Z.00000000098

    Article  Google Scholar 

  23. Hughson W, Westlake H (1944) Manual for program outline for rehabilitation of aural casualties both military and civilian. Trans Am Acad Ophthalmol Otolaryngol 48:1–15

    Google Scholar 

  24. Wouters J, Damman W, Bosman A (1994) Vlaamse opname van woordenlijsten voor spraakaudiometrie. Logopedie: Informatiemedium van de Vlaamse Vereniging Voor Logopedisten 7:28–34.

  25. Van Wieringen A, Wouters J (2008) List and lint: Sentences and numbers for quantifying speech understanding in severely impaired listeners for Flanders and the Netherlands. Int J Audiol 47:348–355. https://doi.org/10.1080/14992020801895144

    Article  PubMed  Google Scholar 

  26. Singhal K, Singhal J, Muzaffar J, Monksfield P, Bance M (2020) Outcomes of cochlear implantation in patients with post-meningitis deafness: a systematic review and narrative synthesis. J Int Adv Otol 16:395–410. https://doi.org/10.5152/iao.2020.9040

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dhanasingh A, Hochmair I (2021) EAS-combined electric and acoustic stimulation. Acta Otolaryngol 141:22–62. https://doi.org/10.1080/00016489.2021.1888477

    Article  PubMed  Google Scholar 

  28. Havenith S (2017) Hearing preservation in cochlear implant surgery: From animal research to clinical application. Dissertation, University Medical Center Utrecht

  29. Mertens G, Van de Heyning P, Vanderveken O, Topsakal V, Van Rompaey V (2021) The smaller the frequency-to-place mismatch the better the hearing outcomes in cochlear implant recipients? Eur Arch Otorhinolaryngol. https://doi.org/10.1007/s00405-021-06899-y

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The Antwerp University Hospital and University Hospital Brussels are currently receiving a research grant from MED-EL (Innsbruck, Austria). VT holds a national Fonds Wetenschappelijk Onderzoek Fundamenteel Klinisch Mandaat (FWO FKM) senior researcher grant [Grant number 18B3222N]. The authors received no specific financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

VT and PH contributed to the conception and design of the study. VV and GM were involved in inclusion and postoperative evaluation of participants. EH analyzed data and wrote the first draft of the manuscript. VT, PH, VV and GM critically revised the manuscript. All authors read and approved the submitted version of the manuscript.

Corresponding author

Correspondence to Emilie Heuninck.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethics approval

The EAR2OS study was registered at clinical trials.gov under identifier NCT03746613 and HEARO device exemption number 80M0763 from the Federal Agency for Medicines and Health Products (FAMHP). The approval of the Antwerp University Hospital ethics committee was granted with number B300201837507. A follow-up study (ARCI25) was registered at clinicaltrails.gov under identifier NCT04102215. The approval of the Antwerp University Hospital ethics committee was granted with number B300201941457 and HEARO device exemption 80M0793.

Informed consent

All participants gave written informed consent prior to participation in accordance with the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heuninck, E., Van de Heyning, P., Van Rompaey, V. et al. Audiological outcomes of robot-assisted cochlear implant surgery. Eur Arch Otorhinolaryngol 280, 4433–4444 (2023). https://doi.org/10.1007/s00405-023-07961-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-023-07961-7

Keywords

Navigation