Skip to main content

Robot-Assisted Cochlear Implantation

  • Chapter
  • First Online:
Cochlear Implants

Abstract

Robotic surgery in the last few decades has become more and more popular in all surgical specialties and during the last few years has also created interest in otology with the objective of improving the surgical accuracy by overcoming the surgeon’ hand limitations such as tremor, drift, and accurate force control feedback. Cochlear implantation may take advantage from robotic assistance in all the steps of the surgery: the approach to the middle ear through a tunnel from the postauricular skin to the inner ear (i.e., direct cochlea access); the minimally invasive cochleostomy by robot-assisted drilling tool; the alignment of the correct insertion axis on the cochlear basal turn, and the insertion of the electrode array via an automated insertion tool. The development of bone-attached parallel robots and image-guided surgical robot system allowed in the last few years the successful first cochlear implantation procedures in patients via a single hole drilled tunnel. Other robotic systems allowed successful implantation with reduced trauma cochleostomy and slow speed accurate insertion in the scala tympani.

Despite these promising results and the increasing number of procedures, the use of robotics in cochlear implantation does not represent yet the standard care. Further laboratory research and clinical studies are necessary to prove the superiority of robotic procedures with respect to standard procedure with the aim of making the intracochlear implant insertion an atraumatic and reversible gesture for a total preservation of the inner ear structure anatomy and physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daniele, De Seta Hannah, Daoudi Renato, Torres Evelyne, Ferrary Olivier, Sterkers Yann, Nguyen. Robotics automation active electrode arrays and new devices for cochlear implantation: A contemporary review. Hear Res. 2022. 414108425-10.1016/j.heares.2021.108425.

    Google Scholar 

  2. Schaefer S, Sahwan M, Metryka A, et al. The benefits of preserving residual hearing following cochlear implantation: a systematic review. Int J Audiol. 2021;60:1–17. https://doi.org/10.1080/14992027.2020.1863484.

    Article  Google Scholar 

  3. Aschendorff A, Kromeier J, Klenzner T, et al. Quality control after insertion of the nucleus contour and contour advance electrode in adults. Ear Hear. 2007;28:75S–9S. https://doi.org/10.1097/AUD.0b013e318031542e.

    Article  PubMed  Google Scholar 

  4. Finley CC, Skinner MW. Role of electrode placement as a contributor to variability in cochlear implant outcomes. Otol Neurotol. 2008;29:920–8. https://doi.org/10.1097/MAO.0b013e318184f492.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Devare J, Gubbels S, Raphael Y. Outlook and future of inner ear therapy. Hear Res. 2018;368:127–35. https://doi.org/10.1016/j.heares.2018.05.009.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mamelle E, Kechai NE, Granger B, et al. Effect of a liposomal hyaluronic acid gel loaded with dexamethasone in a Guinea pig model after manual or motorized cochlear implantation. Eur Arch Otorhinolaryngol. 2017;274:729–36. https://doi.org/10.1007/s00405-016-4331-8.

    Article  PubMed  Google Scholar 

  7. Torres R, Kazmitcheff G, De Seta D, et al. Improvement of the insertion axis for cochlear implantation with a robot-based system. Eur Arch Otorhinolaryngol. 2017;274:715–21. https://doi.org/10.1007/s00405-016-4329-2.

    Article  PubMed  Google Scholar 

  8. Barriat S, Peigneux N, Duran U, et al. The use of a robot to insert an electrode array of Cochlear implants in the cochlea: a feasibility study and preliminary results. Audiol Neurotol. 2021;26(5):361–7.

    Article  Google Scholar 

  9. Kiratzidis T. “Veria operation”: cochlear implantation without a mastoidectomy and a posterior tympanotomy. A new surgical technique. Adv Otorhinolaryngol. 2000;57:127–30. https://doi.org/10.1159/000059218.

    Article  CAS  PubMed  Google Scholar 

  10. Kronenberg J, Migirov L, Dagan T. Suprameatal approach: new surgical approach for cochlear implantation. J Laryngol Otol. 2001;115:283–5. https://doi.org/10.1258/0022215011907451.

    Article  CAS  PubMed  Google Scholar 

  11. Caversaccio M, Stieger C, Weber S, et al. Navigation and robotics of the lateral skull base. HNO. 2009;57:975–82. https://doi.org/10.1007/s00106-009-1985-1.

    Article  CAS  PubMed  Google Scholar 

  12. Klenzner T, Ngan CC, Knapp FB, et al. New strategies for high precision surgery of the temporal bone using a robotic approach for cochlear implantation. Eur Arch Otorhinolaryngol. 2009;266:955–60. https://doi.org/10.1007/s00405-008-0825-3.

    Article  PubMed  Google Scholar 

  13. Majdani O, Rau TS, Baron S, et al. A robot-guided minimally invasive approach for cochlear implant surgery: preliminary results of a temporal bone study. Int J Comput Assist Radiol Surg. 2009;4:475–86. https://doi.org/10.1007/s11548-009-0360-8.

    Article  PubMed  Google Scholar 

  14. Stieger C, Caversaccio M, Arnold A, et al. Development of an auditory implant manipulator for minimally invasive surgical insertion of implantable hearing devices. J Laryngol Otol. 2011;125:262–70. https://doi.org/10.1017/S0022215110002185.

    Article  CAS  PubMed  Google Scholar 

  15. Nguyen Y, Miroir M, Vellin J-F, et al. Minimally invasive computer-assisted approach for Cochlear implantation: a human temporal bone study. Surg Innov. 2011;18:259–67. https://doi.org/10.1177/1553350611405220.

    Article  PubMed  Google Scholar 

  16. Anso J, Balmer TW, Jegge Y, et al. Electrical impedance to assess facial nerve proximity during robotic Cochlear implantation. IEEE Trans Biomed Eng. 2019;66:237–45. https://doi.org/10.1109/TBME.2018.2830303.

    Article  PubMed  Google Scholar 

  17. Caversaccio M, Gavaghan K, Wimmer W, et al. Robotic cochlear implantation: surgical procedure and first clinical experience. Acta Otolaryngol (Stockh). 2017;137:447–54. https://doi.org/10.1080/00016489.2017.1278573.

    Article  Google Scholar 

  18. Kratchman LB, Blachon GS, Withrow TJ, et al. Design of a bone-attached parallel robot for percutaneous cochlear implantation. IEEE Trans Biomed Eng. 2011;58:2904–10. https://doi.org/10.1109/TBME.2011.2162512.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Labadie RF, Mitchell J, Balachandran R, et al. Customized, rapid-production microstereotactic table for surgical targeting: description of concept and in vitro validation. Int J Comput Assist Radiol Surg. 2009;4:273–80. https://doi.org/10.1007/s11548-009-0292-3.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kobler J-P, Kotlarski J, Oltjen J, et al. Design and analysis of a head-mounted parallel kinematic device for skull surgery. Int J Comput Assist Radiol Surg. 2012;7:137–49. https://doi.org/10.1007/s11548-011-0619-8.

    Article  PubMed  Google Scholar 

  21. Kobler J-P, Nuelle K, Lexow GJ, et al. Configuration optimization and experimental accuracy evaluation of a bone-attached, parallel robot for skull surgery. Int J Comput Assist Radiol Surg. 2016;11:421–36. https://doi.org/10.1007/s11548-015-1300-4.

    Article  PubMed  Google Scholar 

  22. Vollmann B, Müller S, Kundrat D, et al. Methods for intraoperative, sterile pose-setting of patient-specific microstereotactic frames. Proc SPIE. 2015;9415(2015):94150M.

    Google Scholar 

  23. Wanna GB, Noble JH, Carlson ML, et al. Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes. Laryngoscope. 2014;124(Suppl 6):S1–7. https://doi.org/10.1002/lary.24728.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhou L, Friedmann DR, Treaba C, et al. Does cochleostomy location influence electrode trajectory and intracochlear trauma? Laryngoscope. 2015;125:966–71. https://doi.org/10.1002/lary.24986.

    Article  PubMed  Google Scholar 

  25. Atturo F, Barbara M, Rask-Andersen H. On the anatomy of the “hook” region of the human cochlea and how it relates to cochlear implantation. Audiol Neurootol. 2014;19:378–85. https://doi.org/10.1159/000365585.

    Article  PubMed  Google Scholar 

  26. Brett PN, Taylor RP, Proops D, et al. A surgical robot for cochleostomy. Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:1229–32. https://doi.org/10.1109/IEMBS.2007.4352519.

    Article  CAS  PubMed  Google Scholar 

  27. Coulson CJ, Reid AP, Proops DW. Robotics can lead to a reproducibly high-quality operative result for ear, nose, and throat patients. Proc Inst Mech Eng. 2010;[H] 224:735–42. https://doi.org/10.1243/09544119JEIM714.

    Article  Google Scholar 

  28. Coulson CJ, Assadi MZ, Taylor RP, et al. A smart micro-drill for cochleostomy formation: a comparison of cochlear disturbances with manual drilling and a human trial. Cochlear Implants Int. 2013;14:98–106. https://doi.org/10.1179/1754762811Y.0000000018.

    Article  CAS  PubMed  Google Scholar 

  29. Assadi MZ, Du X, Dalton J, et al. Comparison on intracochlear disturbances between drilling a manual and robotic cochleostomy. Proc Inst Mech Eng. 2013;227:1002–8. https://doi.org/10.1177/0954411913488507.

    Article  Google Scholar 

  30. Roland JT. A model for Cochlear implant electrode insertion and force evaluation: results with a new electrode design and insertion technique. Laryngoscope. 2005;115:1325–39. https://doi.org/10.1097/01.mlg.0000167993.05007.35.

    Article  PubMed  Google Scholar 

  31. Hussong A, Rau T, Eilers H, et al. Conception and design of an automated insertion tool for cochlear implants. Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5593–6. https://doi.org/10.1109/IEMBS.2008.4650482.

    Article  PubMed  Google Scholar 

  32. Hussong A, Rau TS, Ortmaier T, et al. An automated insertion tool for cochlear implants: another step towards atraumatic cochlear implant surgery. Int J Comput Assist Radiol Surg. 2010;5:163–71. https://doi.org/10.1007/s11548-009-0368-0.

    Article  PubMed  Google Scholar 

  33. Schurzig D, Webster RJ, Dietrich MS, et al. Force of cochlear implant electrode insertion performed by a robotic insertion tool: comparison of traditional versus advance off-stylet techniques. Otol Neurotol. 2010;31:1207–10. https://doi.org/10.1097/MAO.0b013e3181f2ebc3.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Majdani O, Schurzig D, Hussong A, et al. Force measurement of insertion of cochlear implant electrode arrays in-vitro: comparison of surgeon to automated insertion tool. Acta Otolaryngol (Stockh). 2010;130:31–6. https://doi.org/10.3109/00016480902998281.

    Article  Google Scholar 

  35. Rau TS, Zuniga MG, Salcher R, et al. A simple tool to automate the insertion process in cochlear implant surgery. Int J Comput Assist Radiol Surg. 2020;15:1931–9. https://doi.org/10.1007/s11548-020-02243-7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Miroir M, Nguyen Y, Kazmitcheff G, et al. Friction force measurement during cochlear implant insertion: application to a force-controlled insertion tool design. Otol Neurotol. 2012a;33:1092–100. https://doi.org/10.1097/MAO.0b013e31825f24de.

    Article  PubMed  Google Scholar 

  37. Nguyen Y, Miroir M, Kazmitcheff G, et al. Cochlear implant insertion forces in microdissected human cochlea to evaluate a prototype array. Audiol Neurootol. 2012;17:290–8. https://doi.org/10.1159/000338406.

    Article  PubMed  Google Scholar 

  38. Torres R, Kazmitcheff G, Bernardeschi D, et al. Variability of the mental representation of the cochlear anatomy during cochlear implantation. Eur Arch Otorhinolaryngol. 2016;273:2009–18. https://doi.org/10.1007/s00405-015-3763-x.

    Article  PubMed  Google Scholar 

  39. Rajan GP, Kontorinis G, Kuthubutheen J. The effects of insertion speed on inner ear function during cochlear implantation: a comparison study. Audiol Neurootol. 2013;18:17–22. https://doi.org/10.1159/000342821.

    Article  PubMed  Google Scholar 

  40. De Seta D, Torres R, Russo FY, et al. Damage to inner ear structure during cochlear implantation: correlation between insertion force and radio-histological findings in temporal bone specimens. Hear Res. 2017;344:90–7. https://doi.org/10.1016/j.heares.2016.11.002.

    Article  PubMed  Google Scholar 

  41. Nguyen Y, Bernardeschi D, Sterkers O. Potential of robot-based surgery for otosclerosis surgery. Otolaryngol Clin N Am. 2018;51:475–85. https://doi.org/10.1016/j.otc.2017.11.016.

    Article  Google Scholar 

  42. Kazmitcheff G, Miroir M, Nguyen Y, et al. Evaluation of command modes of an assistance robot for middle ear surgery. In: Presented at the 2011 IEEE/RSJ International Conference on Intelligent Robots and System, International Conference on Intelligent Robots and Systems. San Francisco, CA, USA: IEEE; 2011. p. 2532–8. https://doi.org/10.1109/IROS.2011.6094634.

    Chapter  Google Scholar 

  43. Miroir M, Nguyen Y, Szewczyk J, et al. Design, kinematic optimization, and evaluation of a teleoperated system for middle ear microsurgery. Sci World J. 2012;2012:e907372. https://doi.org/10.1100/2012/907372.

    Article  Google Scholar 

  44. Miroir M, Nguyen Y, Szewczyk J, et al. RobOtol: from design to evaluation of a robot for middle ear surgery. In: Presented at the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, CA, USA: IEEE; 2010. p. 850–6. https://doi.org/10.1109/IROS.2010.5650390.

    Chapter  Google Scholar 

  45. Torres R, Jia H, Drouillard M, et al. An optimized robot-based technique for Cochlear implantation to reduce array insertion trauma. Otolaryngol Head Neck Surg. 2018;159:900–7. https://doi.org/10.1177/0194599818792232.

    Article  PubMed  Google Scholar 

  46. Zhang J, Wei W, Ding J, et al. Inroads toward robot-assisted cochlear implant surgery using steerable electrode arrays. Otol Neurotol. 2010;31:1199–206. https://doi.org/10.1097/MAO.0b013e3181e7117e.

    Article  PubMed  Google Scholar 

  47. Wu J, Yan L, Xu H, et al. A curvature-controlled 3D micro-electrode array for cochlear implants. In: The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Seoul, Korea: Digest of Technical Papers; 2005. p. 1636–9. https://doi.org/10.1109/SENSOR.2005.1497402.

    Chapter  Google Scholar 

  48. Labadie RF, Balachandran R, Noble JH, et al. Minimally-invasive, image-guided Cochlear implantation surgery: first report of clinical implementation. Laryngoscope. 2014;124:1915–22. https://doi.org/10.1002/lary.24520.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Robert F, Labadie Katherine, Riojas Kathleen, Von Wahlde Jason, Mitchell Trevor, Bruns Robert, Webster Benoit, Dawant J. Michael, Fitzpatrick Jack, Noble. Clinical Implementation of Second-generation Minimally Invasive Image-guided Cochlear Implantation Surgery. Otol Neurotol. 2021. Publish Ahead of Print https://doi.org/10.1097/MAO.0000000000003025

  50. Sykopetrites V, Lahlou G, Torres R, et al. Robot-based assistance in middle ear surgery and cochlear implantation: first clinical report. Eur Arch Otorhinolaryngol. 2020;278(1):77–85. https://doi.org/10.1007/s00405-020-06070-z.

    Article  Google Scholar 

  51. Jia H, Pan JX, Li Y, et al. Preliminary application of robot-assisted electrode insertion in cochlear implantation. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2020;55:952–6. https://doi.org/10.3760/cma.j.cn115330-20200228-00141.

    Article  CAS  PubMed  Google Scholar 

  52. Daoudi H, Lahlou G, Torres R, et al. Robot-assisted Cochlear implant electrode array insertion in adults: A comparative study with manual insertion. Otol Neurotol. 2021;42(4):e438–44. https://doi.org/10.1097/MAO.0000000000003002.

    Article  PubMed  Google Scholar 

  53. O’Connell BP, Holder JT, Dwyer RT, et al. Intra- and postoperative electrocochleography may be predictive of final electrode position and postoperative hearing preservation. Front Neurosci. 2017;11:291. https://doi.org/10.3389/fnins.2017.00291.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lo J, Bester C, Collins A, et al. Intraoperative force and electrocochleography measurements in an animal model of cochlear implantation. Hear Res. 2018;358:50–8. https://doi.org/10.1016/j.heares.2017.11.001.

    Article  CAS  PubMed  Google Scholar 

  55. Yin LX, Barnes JH, Saoji AA, Carlson ML. Clinical utility of electrocochleography (ECochG) during cochlear implantation: a systematic review and quantitative analysis. Otol Neurotol. 2021;42:363–71. https://doi.org/10.1097/MAO.0000000000002996.

    Article  PubMed  Google Scholar 

  56. Labadie RF, Riojas K, Von Wahlde K, Mitchell J, Bruns T, Webster III R, Dawant B, Fitzpatrick JM, Noble J. Clinical implementation of second-generation minimally invasive image-guided cochlear implantation surgery. Otol Neurotol. 2021;42(5):702–5. https://doi.org/10.1097/MAO.0000000000003025.

  57. De Seta D, Daoudi H, Torres R, Ferrary E, Sterkers O, Nguyen Y. Robotics automation active electrode arrays and new devices for cochlear implantation: A contemporary review. Hear Res. 2021;414:108425. https://doi.org/10.1016/j.heares.2021.108425

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

17.1 Electronic Supplementary Material

Robot based Cochlear Implant insertion (MP4 821201 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Seta, D., Nguyen, Y., Torres, R., Mosnier, I., Sterkers, O. (2022). Robot-Assisted Cochlear Implantation. In: DeSaSouza, S. (eds) Cochlear Implants. Springer, Singapore. https://doi.org/10.1007/978-981-19-0452-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0452-3_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0451-6

  • Online ISBN: 978-981-19-0452-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics