Skip to main content

Advertisement

Log in

Impact of Bepanthen® and dexpanthenol on human nasal ciliary beat frequency in vitro

  • Rhinology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Background

Dexpanthenol-containing ointments/fluids are recommended to restore impaired nasal mucosa. To date, there are no data about the influence of dexpanthenol or formulations including dexpanthenol on ciliary beat frequency (CBF) of nasal epithelial cells.

Methods

We tested the ciliary beat frequency of human nasal epithelial cells in RPMI 1640 cell solution using in vitro high-frequency video microscopy every 60 s over a period of 15 min (min). Bepanthen® solution and dexpanthenol in two clinically relevant concentrations (1.67% and 3.33%) were added to the cells. Addition of sterile water served as control group. To get a better overview, the measurements after 1 min, 5 min and 15 min were combined.

Results

The CBF in the control group (n = 17) after 15 min was 7.3 ± 2.6 Hz. In comparison, the CBF after 15 min was 1.8 ± 1.0 Hz in the 3.33% Bepanthen® group (n = 17) and 3.2 ± 1.2 Hz in the 1.67% group, which was statistically significantly lower in both groups (p < 0.001). With regard to the dexpanthenol group (n = 17) a CBF of 6.0 ± 2.6 Hz with 3.33% and 6.1 ± 2.4 Hz with 1.67% dexpanthenol, was detected, which was again statistically significantly lower (p = 0.06) compared to the control group except CBF at 15 min with 1.57% (n = 17; p = 0.04). In general, the effect on CBF was less pronounced with dexpanthenol compared with Bepanthen® with a statistically significant difference between the two formulations. The results were verified by calculating an analysis of variance (ANOVA).

Conclusions

Bepanthen® as an ointment, solution or inhalation is commonly used in ENT for mucosal care. Our results have shown that both substances reduce CBF in clinically relevant concentrations, although the effect was more pronounced with Bepanthen® compared to dexpanthenol solution, which could be related to additives or change of physical properties in the solution. Further research is needed to assess potential clinical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on request.

References

  1. Mosges R, Shah-Hosseini K, Hucke HP, Joisten MJ (2017) Dexpanthenol: an overview of its contribution to symptom relief in acute rhinitis treated with decongestant nasal sprays. Adv Ther 34(8):1850–1858

    Article  PubMed  PubMed Central  Google Scholar 

  2. Klocker N, Verse T, Rudolph P (2003) The protective effect of dexpanthenol in nasal sprays. First results of cytotoxic and ciliary-toxic studies in vitro. Laryngorhinootologie 82(3):177–182

    CAS  PubMed  Google Scholar 

  3. Proksch E, de Bony R, Trapp S, Boudon S (2017) Topical use of dexpanthenol: a 70th anniversary article. J Dermatolog Treat 28(8):766–773

    Article  CAS  PubMed  Google Scholar 

  4. Hosemann W, Wigand ME, Gode U, Langer F, Dunker I (1991) Normal wound healing of the paranasal sinuses: clinical and experimental investigations. Eur Arch Otorhinolaryngol 248(7):390–394

    Article  CAS  PubMed  Google Scholar 

  5. Biro K, Thaci D, Ochsendorf FR, Kaufmann R, Boehncke WH (2003) Efficacy of dexpanthenol in skin protection against irritation: a double-blind, placebo-controlled study. Contact Dermatitis 49(2):80–84

    Article  CAS  PubMed  Google Scholar 

  6. Stüttgen G, Krause H (1960) Die percutane Absorption von tritium-markiertem Panthenol bei Mensch und Tier. Arch Klin Exp Dermatol 209(6):578–582

    Article  Google Scholar 

  7. Gimenez-Arnau A (2016) Standards for the protection of skin barrier function. Curr Probl Dermatol 49:123–134

    Article  PubMed  Google Scholar 

  8. Slyshenkov VS, Omelyanchik SN, Moiseenok AG, Trebukhina RV, Wojtczak L (1998) Pantothenol protects rats against some deleterious effects of gamma radiation. Free Radic Biol Med 24(6):894–899

    Article  CAS  PubMed  Google Scholar 

  9. Slyshenkov VS, Omelyanchik SN, Moiseenok AG, Petushok NE, Wojtczak L (1999) Protection by pantothenol and beta-carotene against liver damage produced by low-dose gamma radiation. Acta Biochim Pol 46(2):239–248

    Article  CAS  PubMed  Google Scholar 

  10. Sedaghat MH, Shahmardan MM, Norouzi M, Heydari M (2016) Effect of cilia beat frequency on muco-ciliary clearance. J Biomed Phys Eng 6(4):265–278

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Braiman A, Priel Z (2008) Efficient mucociliary transport relies on efficient regulation of ciliary beating. Respir Physiol Neurobiol 163(1–3):202–207

    Article  PubMed  Google Scholar 

  12. Bustamante-Marin XM, Ostrowski LE (2017) Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol 9(4):a028241

    Article  PubMed  PubMed Central  Google Scholar 

  13. Comba A, Atan D (2020) Evaluation of nasal mucociliary clearance time in children with celiac disease. Int J Pediatr Otorhinolaryngol 133:109936

    Article  PubMed  Google Scholar 

  14. Mirra V, Werner C, Santamaria F (2017) Primary ciliary dyskinesia: an update on clinical aspects, genetics, diagnosis, and future treatment strategies. Front Pediatr 5:135

    Article  PubMed  PubMed Central  Google Scholar 

  15. Boek WM, Graamans K, Natzijl H, van Rijk PP, Huizing EH (2002) Nasal mucociliary transport: new evidence for a key role of ciliary beat frequency. Laryngoscope 112(3):570–573

    Article  PubMed  Google Scholar 

  16. Cohen NA (2006) Sinonasal mucociliary clearance in health and disease. Ann Otol Rhinol Laryngol Suppl 196:20–26

    Article  PubMed  Google Scholar 

  17. Birk R, Aderhold C, Stern-Strater J, Hormann K, Stuck BA, Sommer JU (2015) Polyhexanide-containing solution reduces ciliary beat frequency of human nasal epithelial cells in vitro. Eur Arch Otorhinolaryngol 272(2):377–383

    Article  PubMed  Google Scholar 

  18. Birk R, Aderhold C, Wenzel A et al (2016) Mupirocin reduces ciliary beat frequency of human nasal epithelial cells. Eur Arch Otorhinolaryngol 273(12):4335–4341

    Article  CAS  PubMed  Google Scholar 

  19. Behr W, Horschke F, Nastev A et al (2021) Effects of tranexamic acid on human nasal ciliary beat frequency. Eur Arch Otorhinolaryngol 278:3351–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sommer JU, Gross S, Hormann K, Stuck BA (2010) Time-dependent changes in nasal ciliary beat frequency. Eur Arch Otorhinolaryngol 267(9):1383–1387

    Article  PubMed  Google Scholar 

  21. Jorissen M, Bessems A (1995) Influence of culture duration and ciliogenesis on the relationship between ciliary beat frequency and temperature in nasal epithelial cells. Eur Arch Otorhinolaryngol 252(8):451–454

    Article  CAS  PubMed  Google Scholar 

  22. Sauvalle M, Alvo A (2018) Effect of the temperature of nasal lavages on mucociliary clearance: a randomised controlled trial. Eur Arch Otorhinolaryngol 275(9):2403–2406

    Article  PubMed  Google Scholar 

  23. Sisson JH, Stoner JA, Ammons BA, Wyatt TA (2003) All-digital image capture and whole-field analysis of ciliary beat frequency. J Microsc 211(Pt 2):103–111

    Article  CAS  PubMed  Google Scholar 

  24. Nastev A, Sommer JU, Behr W et al (2020) Cocaine reduces ciliary beat frequency of human nasal epithelial cells. In Vivo Nov-Dec 34(6):3285–3289

    Article  CAS  Google Scholar 

  25. Birk R, Handel A, Wenzel A et al (2017) Heated air humidification versus cold air nebulization in newly tracheostomized patients. Head Neck 39(12):2481–2487

    Article  PubMed  PubMed Central  Google Scholar 

  26. R: A language and environment for statistical computing [computer program]. Version. Vienna, Austria: R Foundation for statistical Computing; 2020

  27. Hahn C, Bohm M, Allekotte S, Mosges R (2013) Tolerability and effects on quality of life of liposomal nasal spray treatment compared to nasal ointment containing dexpanthenol or isotonic NaCl spray in patients with rhinitis sicca. Eur Arch Otorhinolaryngol 270(9):2465–2472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eloy P, Andrews P, Poirrier AL (2017) Postoperative care in endoscopic sinus surgery: a critical review. Curr Opin Otolaryngol Head Neck Surg 25(1):35–42

    Article  PubMed  Google Scholar 

  29. Rudmik L, Soler ZM, Orlandi RR et al (2011) Early postoperative care following endoscopic sinus surgery: an evidence-based review with recommendations. Int Forum Allergy Rhinol Nov-Dec 1(6):417–430

    Article  Google Scholar 

  30. Yildirim G, Kumral TL, Altindag C, Ozdemir E, Uyar Y (2017) The effect of dexpanthenol-vitamin A (Nazalnem) on silastic splints after nasal septal surgery. J Craniofac Surg 28(8):2139–2142

    Article  PubMed  Google Scholar 

  31. Fooanant S, Chaiyasate S, Roongrotwattanasiri K (2008) Comparison on the efficacy of dexpanthenol in sea water and saline in postoperative endoscopic sinus surgery. J Med Assoc Thai 91(10):1558–1563

    PubMed  Google Scholar 

  32. Tantilipikorn P, Tunsuriyawong P, Jareoncharsri P et al (2012) A randomized, prospective, double-blind study of the efficacy of dexpanthenol nasal spray on the postoperative treatment of patients with chronic rhinosinusitis after endoscopic sinus surgery. J Med Assoc Thai 95(1):58–63

    PubMed  Google Scholar 

  33. Gouteva I, Shah-Hosseini K, Meiser P (2014) Clinical efficacy of a spray containing hyaluronic acid and dexpanthenol after surgery in the nasal cavity (septoplasty, simple ethmoid sinus surgery, and turbinate surgery). J Allergy (Cairo) 2014:635490

    PubMed  Google Scholar 

  34. Beck R, Sorge M, Schneider A, Dietz A (2018) Current approaches to epistaxis treatment in primary and secondary care. Dtsch Arztebl Int 115(1–02):12–22

    PubMed  PubMed Central  Google Scholar 

  35. Kocak HE, Bilece ZT, Keskin M, Ulusoy HA, Koc AK, Kaya KH (2019) Comparison of topical treatment methods used in recurrent anterior epistaxis: a randomized clinical trial. Braz J Otorhinolaryngol

  36. Ozmen S, Ozmen OA (2012) Is local ointment or cauterization more effective in childhood recurrent epistaxis. Int J Pediatr Otorhinolaryngol 76(6):783–786

    Article  PubMed  Google Scholar 

  37. Klocker N, Rudolph P, Verse T (2004) Evaluation of protective and therapeutic effects of dexpanthenol on nasal decongestants and preservatives: results of cytotoxic studies in vitro. Am J Rhinol Sep-Oct 18(5):315–320

    Article  Google Scholar 

  38. Kehrl W, Sonnemann U, Dethlefsen U (2003) Advance in therapy of acute rhinitis–comparison of efficacy and safety of xylometazoline in combination xylometazoline-dexpanthenol in patients with acute rhinitis. Laryngorhinootologie 82(4):266–271

    Article  CAS  PubMed  Google Scholar 

  39. Kehrl W, Sonnemann U (1998) Dexpanthenol nasal spray as an effective therapeutic principle for treatment of rhinitis sicca anterior. Laryngorhinootologie 77(9):506–512

    Article  CAS  PubMed  Google Scholar 

  40. Palmberger TF, Augustijns P, Vetter A, Bernkop-Schnurch A (2011) Safety assessment of thiolated polymers: effect on ciliary beat frequency in human nasal epithelial cells. Drug Dev Ind Pharm 37(12):1455–1462

    Article  CAS  PubMed  Google Scholar 

  41. Munkholm M, Mortensen J (2014) Mucociliary clearance: pathophysiological aspects. Clin Physiol Funct Imaging 34(3):171–177

    Article  PubMed  Google Scholar 

  42. Robinson M, Bye PT (2002) Mucociliary clearance in cystic fibrosis. Pediatr Pulmonol 33(4):293–306

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wieland Behr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behr, W., Li, H., Birk, R. et al. Impact of Bepanthen® and dexpanthenol on human nasal ciliary beat frequency in vitro. Eur Arch Otorhinolaryngol 280, 3731–3736 (2023). https://doi.org/10.1007/s00405-023-07916-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-023-07916-y

Keywords

Navigation