Skip to main content

Advertisement

Log in

Biomarkers of Alzheimer’s disease in severe obstructive sleep apnea–hypopnea syndrome in the Chinese population

  • Miscellaneous
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 02 July 2021

Abstract

Purpose

Patients with severe obstructive sleep apnea–hypopnea syndrome are often accompanied by symptoms such as decreased cognitive function and daytime sleepiness, while cognitive function is often associated with biomarkers of Alzheimer’s disease. Therefore, this study aims to explore the level of Alzheimer’s disease biomarkers in the plasma of obstructive sleep apnea–hypopnea syndrome patients as well as the relationship between cognitive function and daytime sleepiness.

Methods

Between May and July 2019, 35 patients requiring hospitalization for severe obstructive sleep apnea–hypopnea syndrome and 16 normal control patients were selected from West China Hospital. Alzheimer’s disease biomarkers (Aβ40, Aβ42, t-tau, p-tau) in plasma were detected by ELISA in all 51 subjects. The differences in Alzheimer’s disease biomarkers between the two groups were compared. In addition, a correlation analysis of disease-related indicators and univariate analysis of the risk factors of obstructive sleep apnea–hypopnea syndrome was conducted using the logistic regression model.

Results

The plasma levels of Alzheimer’s disease biomarkers (Aβ40, t-tau, p-tau) in patients with severe obstructive sleep apnea–hypopnea syndrome were significantly higher than those in the control group (29.24 ± 32.52, 13.18 ± 10.78, p = 0.049; 11.88 ± 7.05, 7.64 ± 4.17, p = 0.037; 26.31 ± 14.41, 17.34 ± 9.12, p = 0.027). Aβ42, Aβ40, t-tau, and p-tau were significantly negatively correlated with mean oxygen saturation, low oxygen saturation and Mini-Mental State examination scale scores, and positively correlated with oxygen desaturation index and Epworth Sleepiness Scale scores. T-tau and p-tau can be used as new risk factors for obstructive sleep apnea–hypopnea syndrome.

Conclusion

Alzheimer’s disease biomarkers in the plasma of obstructive sleep apnea–hypopnea syndrome patients are higher than those in the control group, and the mechanism of action may be related to sleep disorders and night hypoxia. The Alzheimer’s disease biomarkers deposited in plasma may also cause the decline of patients’ cognitive function, increased daytime sleepiness and accelerate the progression of obstructive sleep apnea–hypopnea syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Farnoosh E, Habibolah K, Masoud T (2016) The association between obstructive sleep apnea and Alzheimer’s disease: a meta-analysis perspective. Front Aging Neurosci 8:78. https://doi.org/10.3389/fnagi.2016.00078

    Article  Google Scholar 

  2. Chen R, Xiong KP, Huang JY (2011) Neurocognitive impairment in Chinese patients with obstructive sleep apnoea hypopnoea syndrome. Respirology 16(5):842–848. https://doi.org/10.1111/j.1440-1843.2011.01979.x

    Article  PubMed  Google Scholar 

  3. Bubu OM, Andrade AG, Umasabor-Bubu OQ (2019) Obstructive sleep apnea, cognition and Alzheimer’s disease: a systematic review integrating three decades of multidisciplinary research. Sleep Med Rev 50:101250. https://doi.org/10.1016/j.smrv.2019.101250

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bucks RS, Olaithe M, Eastwood P (2013) Neurocognitive function in obstructive sleep apnoea: a meta-review. Respirology 18(1):61–70. https://doi.org/10.1111/j.1440-1843.2012.02255.x

    Article  PubMed  Google Scholar 

  5. Daulatzai MA (2015) Evidence of neurodegeneration in obstructive sleep apnea: relationship between obstructive sleep apnea and cognitive dysfunction in the elderly. J Neurosci Res 93(12):1778–1794. https://doi.org/10.1002/jnr.23634

    Article  CAS  PubMed  Google Scholar 

  6. Wei-Pin C, Mu-En L, Wei-Chiao C (2013) Sleep apnea and the risk of dementia: a population-based 5-year follow-up study in Taiwan. PLoS ONE 8(10):e78655. https://doi.org/10.1371/journal.pone.0078655

    Article  CAS  Google Scholar 

  7. Gustaw-Rothenberg K, Lerner A, Bonda DJ (2010) Biomarkers in Alzheimer’s disease: past, present and future. Biomark Med 4(1):15–26. https://doi.org/10.2217/bmm.09.86

    Article  CAS  PubMed  Google Scholar 

  8. Evans DA, Funkenstein HH, Albert MS (1989) Prevalence of Alzheimer’s disease in a community population of older persons: higher than previously reported. JAMA 262(18):2551–2556. https://doi.org/10.1001/jama.1989.03430180093036

    Article  CAS  PubMed  Google Scholar 

  9. Andrade AG, Bubu OM, Varga AW (2018) The relationship between obstructive sleep apnea and Alzheimer’s disease. J Alzheimers Dis 64(1):S255–S270. https://doi.org/10.3233/JAD-179936

    Article  PubMed  PubMed Central  Google Scholar 

  10. Osorio RS, Gumb T, Pirraglia E, Varga AW (2015) Sleep-disordered breathing advances cognitive decline in the elderly. Neurology 84(19):1964–1971. https://doi.org/10.1212/WNL.0000000000001566

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zetterberg H, Mattsson N, Shaw L (2010) Biochemical markers in Alzheimer’s disease clinical trials. Biomark Med 4(1):91–98. https://doi.org/10.2217/bmm.09.80

    Article  CAS  PubMed  Google Scholar 

  12. Irizarry MC (2004) Biomarkers of Alzheimer disease in plasma. NeuroRx 1(2):226–234. https://doi.org/10.1602/neurorx.1.2.226

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shpirer I, Elizur A, Shorer R (2012) Hypoxemia correlates with attentional dysfunction in patients with obstructive sleep apnea. Sleep Breath 16(3):821–827. https://doi.org/10.1007/s11325-011-0582-1

    Article  PubMed  Google Scholar 

  14. Quan SF, Chan CS, Dement WC (2010) The association between obstructive sleep apnea and neurocognitive performance—the Apnea Positive Pressure Long-term Efficacy Study (APPLES). Sleep 34(3):303–314. https://doi.org/10.1093/sleep/34.3.303

    Article  Google Scholar 

  15. Li L, Zhang X, Yang D (2009) Hypoxia increases A beta generation by altering beta and gammacleavage of APP. Neurobiol Aging 30(7):1091–1098. https://doi.org/10.1016/j.neurobiolaging.2007.10.011

    Article  CAS  PubMed  Google Scholar 

  16. Shiota S, Takekawa H, Matsumoto S (2013) Chronic intermittent hypoxia/reoxygenation facilitate amyloid-beta generation in mice. J Alzheimers Dis 37(2):325–333. https://doi.org/10.3233/JAD-130419

    Article  CAS  PubMed  Google Scholar 

  17. Guglielmotto M, Aragno M, Autelli R (2009) The up-regulation of BACE1 mediated by hypoxia and ischemic injury: role of oxidative stress and HIF1 alpha. J Neurochem 108(4):1045–1056. https://doi.org/10.1111/j.1471-4159.2008.05858.x

    Article  CAS  PubMed  Google Scholar 

  18. Salminen A, Kauppinen A, Kaarniranta K (2017) Hypoxia/ischemia activate processing of amyloid precursor protein: impact of vascular dysfunction in the pathogenesis of Alzheimer’s disease. J Neurochem 140(4):536–549. https://doi.org/10.1111/jnc.13932

    Article  CAS  PubMed  Google Scholar 

  19. Halbach MM, Spann CO, Egan G (2003) Effect of sleep deprivation on medical resident and student cognitive function: a prospective study. Am J Obstet Gynecol 188(5):1198–1201. https://doi.org/10.1067/mob.2003.306

    Article  PubMed  Google Scholar 

  20. Ju YS, Ooms SJ, Sutphen C (2017) Slow wave sleep disruption increases cerebrospinal fluid amyloid-β levels. Brain A J Neurol 140(8):2104. https://doi.org/10.1093/brain/awx148

    Article  Google Scholar 

  21. Johns MW (1993) Daytime sleepiness, snoring, and obstructive sleep apnea. The Epworth Sleepiness Scale. Chest 103(1):30–36. https://doi.org/10.1378/chest.103.1.30

    Article  CAS  PubMed  Google Scholar 

  22. Agrawal A, Ilango K, Singh PK (2015) Age dependent levels of plasma homocysteine and cognitive performance. Behav Brain Res 283:139–144. https://doi.org/10.1016/j.bbr.2015.01.016

    Article  CAS  PubMed  Google Scholar 

  23. Setién-Suero E, Suárez-Pinilla M (2016) Homocysteine and cognition: a systematic review of 111 studies. Neurosci Biobehav Rev 69:280–298. https://doi.org/10.1016/j.neubiorev.2016.08.014

    Article  CAS  PubMed  Google Scholar 

  24. Flemmig J, ZámockýAlia MA (2018) Amyloid β and free heme: bloody new insights into the pathogenesis of Alzheimer’s disease. Neural Regener Res 13(7):1170. https://doi.org/10.4103/1673-5374.235021

    Article  Google Scholar 

  25. Petit D, Gagnon JF, Fantini ML (2004) Sleep and quantitative EEG in neurodegenerative disorders. J Psychosom Res 56(5):487–496. https://doi.org/10.1016/j.jpsychores.2004.02.001

    Article  PubMed  Google Scholar 

  26. Ooms S, Overeem S, Besse K (2014) Effect of 1 night of total sleep deprivation on cerebrospinal fluid β-amyloid 42 in healthy middle-aged men: a randomized clinical trial. JAMA Neurol 71(8):971. https://doi.org/10.1001/jamaneurol.2014.1173

    Article  PubMed  Google Scholar 

  27. Kang JE, Lim MM (2009) Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science 326(5955):1005–1007. https://doi.org/10.1126/science.1180962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang Y (2012) Effects of age and amyloid deposition on Aβ dynamics in the human central nervous system. Arch Neurol 69(1):51. https://doi.org/10.1001/archneurol.2011.235

    Article  PubMed  Google Scholar 

  29. Menkes-Caspi N, Yamin H, Kellner V (2015) Pathological tau disrupts ongoing network activity. Neuron 85(5):959–966. https://doi.org/10.1016/j.neuron.2015.01.025

    Article  CAS  PubMed  Google Scholar 

  30. Mander BA, Marks SM, Vogel JW (2015) β-Amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nat Neurosci 18(7):1051–1057. https://doi.org/10.1038/nn.4035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen YG (2018) Research progress in the pathogenesis of Alzheimer’s disease. Chin Med J 131(13):1618–1624. https://doi.org/10.4103/0366-6999.235112

    Article  PubMed  PubMed Central  Google Scholar 

  32. Eisele YS, Bolmont T, Heikenwalder M (2009) Induction of cerebral β-amyloidosis: intracerebral versus systemic Aβ inoculation. Proc Natl Acad Sci USA 106(31):12926–12931. https://doi.org/10.1073/pnas.0903200106

    Article  PubMed  PubMed Central  Google Scholar 

  33. Eisele YS, Obermüller U, Heilbronner G (2010) Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science 330(6006):980–982. https://doi.org/10.1126/science.1194516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sutcliffe JG, Hedlund PB, Thomas EA (2011) Peripheral reduction of β-amyloid is sufficient to reduce brain β-amyloid: implications for Alzheimer. J Neurosci Res 89(6):808–814. https://doi.org/10.1002/jnr.22603

    Article  CAS  PubMed  Google Scholar 

  35. Marques MA, Kulstad JJ, Savard CE (2009) Peripheral amyloid-beta levels regulate amyloid-beta clearance from the central nervous system. J Alzheimers Dis 16(2):325–329. https://doi.org/10.3233/JAD-2009-0964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Welge V, Fiege O, Lewczuk P (2009) Combined CSF tau, p-tau181 and amyloid-β 38/40/42 for diagnosing Alzheimer’s disease. J Neural Transm 116(2):203–212. https://doi.org/10.1007/s00702-008-0177-6

    Article  CAS  PubMed  Google Scholar 

  37. Hu L, Xu X, Gong Y (2008) Percutaneous biphasic electrical stimulation for treatment of obstructive sleep apnea syndrome. IEEE Trans Biomed Eng 55(1):181–187. https://doi.org/10.1109/TBME.2007.897836

    Article  PubMed  Google Scholar 

  38. Hein M, Lanquart JP, Loas G (2017) Prevalence and risk factors of moderate to severe obstructive sleep apnea syndrome in insomnia sufferers: a study on 1311 subjects. Respir Res 18(1):135. https://doi.org/10.1186/s12931-017-0616-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Elias A, Cummins T, Tyrrell R (2018) Risk of Alzheimer’s disease in obstructive sleep apnea syndrome: amyloidβ and tau imaging. J Alzheimers Dis 66(2):733–741. https://doi.org/10.3233/JAD-180640

    Article  CAS  PubMed  Google Scholar 

  40. Daltro C, Gregorio PB, Alves E (2007) Prevalence and severity of sleep apnea in a group of morbidly obese patients. Obes Surg 17(6):809–814. https://doi.org/10.1007/s11695-007-9147-6

    Article  PubMed  Google Scholar 

  41. Elias MF, Elias PK, Sullivan LM (2003) Lower cognitive function in the presence of obesity and hypertension: the Framingham heart study. Int J Obes 27(2):260–268. https://doi.org/10.1038/sj.ijo.802225

    Article  CAS  Google Scholar 

  42. Gustafson D, Rothenberg E, Blennow K (2003) An 18-year follow-up of overweight and risk of Alzheimer disease. Arch Intern Med 163(13):1524. https://doi.org/10.1001/archinte.163.13.1524

    Article  PubMed  Google Scholar 

  43. Li Y, Dai Q, Jackson JC (2012) Overweight is associated with decreased cognitive functioning among school-age children and adolescents. Obesity 16(8):1809–1815. https://doi.org/10.1038/oby.2008.296

    Article  Google Scholar 

  44. Kheirandish-Gozal L, Philby MF, Alonso-Álvarez ML (2016) Biomarkers of Alzheimer disease in children with obstructive sleep apnea: effect of adenotonsillectomy. Sleep 39(6):1225–1232. https://doi.org/10.5665/sleep.5838

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kilicarslan R, Alkan A, Sharifov R (2014) The effect of obesity on brain diffusion alteration in patients with obstructive sleep apnea. Sci World J 2014:1–7. https://doi.org/10.1155/2014/768415

    Article  Google Scholar 

Download references

Acknowledgements

We thank Daohong Meng, Professor of Public Health and Epidemiology in University of South Florida, for his suggestion on the study and discussion of the results. We also thank Maria Xu, for her contribution on the data analysis.

Funding

This project was supported by the National Basic Research and Development Program of China named Sleep Brain Function and Mechanism Research; Project No.: 2015CB856400.

Author information

Authors and Affiliations

Authors

Contributions

WK: design of the research, collection of data, writing up of article; HG and JW: collection of experiment data; YZ and WX: analysis of experiment data, revising the article. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yun Zheng or Wei Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical permissions

All participants gave their informed consent including for the use of ELISA data. The West China Hospital Ethics Review Committees approved the study protocols. Approval number is 2019(485).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on sleep apnea syndrome. Guest editors: Manuele Casale, Rinaldi Vittorio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, W., Zheng, Y., Xu, W. et al. Biomarkers of Alzheimer’s disease in severe obstructive sleep apnea–hypopnea syndrome in the Chinese population. Eur Arch Otorhinolaryngol 278, 865–872 (2021). https://doi.org/10.1007/s00405-020-05948-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-020-05948-2

Keywords

Navigation