Skip to main content

Advertisement

Log in

P14ARF deficiency and its correlation with overexpression of p53/MDM2 in sporadic vestibular schwannomas

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Recent studies have shed considerable light into schwannomas. To date, only merlin has been identified as a hallmark or pathogenesis of both sporadic and NF2-related schwannomas. Here, we show, by immunoblot and immunohistochemical analyses of 58 sporadic vestibular schwannomas, that upregulation of p53 was observed in 90 % of tumors examined. No p53 mutations were found in 12 % tumors analyzed. Expression of p14ARF was negative in 95 % of tumors, while overexpression of MDM2 was found in all specimens. Aberrant DNA hypermethylation of the p14ARF promoter was observed in three of seven tumors examined (43 %), associated with remarkably decreased mRNA levels. The very high degree of concordance in the aberrations of the p14ARF/MDM2/p53 pathway in this tumor may be considered to be a new player in the pathogenesis of sporadic vestibular schwannomas. Moreover, expression of p21 (waf1) was negative in all tumors, suggesting that the aberration of this pathway is associated with greater attenuation of p21-mediated signals that are critical for growth inhibition. These data are in agreement with the model in RT-4 rat schwannoma cells: i.e., overexpression of ARF was associated with accumulation of p21 expression both at protein and mRNA levels. ShRNA knock-down of p53 expression attenuated p21-mediated increase in cellular arrest in the G1-phase, suggesting that p14ARF regulates p21 protein levels through a p53-dependent pathway. Thus, this study reveals a high degree of concordance in the aberrations of the p14ARF/MDM2/p53 pathway with the development of sporadic vestibular schwannomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Altomare DA, Vaslet CA, Skele KL, De Rienzo A, Devarajan K, Jhanwar SC, McClatchey AI, Kane AB, Testa JR (2005) A mouse model recapitulating molecular features of human mesothelioma. Cancer Res 65:8090–8095

    Article  CAS  PubMed  Google Scholar 

  2. Bar J, Lukaschuk N, Zalcenstein A, Wilder S, Seger R, Oren M (2005) The pi3 k inhibitor ly294002 prevents p53 induction by DNA damage and attenuates chemotherapy-induced apoptosis. Cell Death Differ 12:1578–1587

    Article  CAS  PubMed  Google Scholar 

  3. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering rnas in mammalian cells. Science 296:550–553

    Article  CAS  PubMed  Google Scholar 

  4. Chang Z, Guo CL, Ahronowitz I, Stemmer-Rachamimov AO, MacCollin M, Nunes FP (2009) A role for the p53 pathway in the pathology of meningiomas with nf2 loss. J Neurooncol 91:265–270

    Article  PubMed Central  PubMed  Google Scholar 

  5. Dayalan AH, Jothi M, Keshava R, Thomas R, Gope ML, Doddaballapur SK, Somanna S, Praharaj SS, Ashwathnarayanarao CB, Gope R (2006) Age dependent phosphorylation and deregulation of p53 in human vestibular schwannomas. Mol Carcinogen 45:38–46

    Article  CAS  Google Scholar 

  6. Derks S, Lentjes MH, Hellebrekers DM, de Bruine AP, Herman JG, van Engeland M (2004) Methylation-specific pcr unraveled. Cell Oncol 26:291–299

    CAS  PubMed  Google Scholar 

  7. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B (1993) Waf1, a potential mediator of p53 tumor suppression. Cell 75:817–825

    Article  CAS  PubMed  Google Scholar 

  8. Fleury-Feith J, Lecomte C, Renier A, Matrat M, Kheuang L, Abramowski V, Levy F, Janin A, Giovannini M, Jaurand MC (2003) Hemizygosity of nf2 is associated with increased susceptibility to asbestos-induced peritoneal tumours. Oncogene 22:3799–3805

    Article  CAS  PubMed  Google Scholar 

  9. Jongsma J, van Montfort E, Vooijs M, Zevenhoven J, Krimpenfort P, van der Valk M, van de Vijver M, Berns A (2008) A conditional mouse model for malignant mesothelioma. Cancer Cell 13:261–271

    Article  CAS  PubMed  Google Scholar 

  10. Kalamarides M, Stemmer-Rachamimov AO, Takahashi M, Han ZY, Chareyre F, Niwa-Kawakita M, Black PM, Carroll RS, Giovannini M (2008) Natural history of meningioma development in mice reveals: a synergy of Nf2 and p16(ink4a) mutations. Brain Pathol 18:62–70

    Article  PubMed Central  PubMed  Google Scholar 

  11. Kanellou P, Zaravinos A, Zioga M, Stratigos A, Baritaki S, Soufla G, Zoras O, Spandidos DA (2008) Genomic instability, mutations and expression analysis of the tumour suppressor genes p14(arf), p15(ink4b), p16(ink4a) and p53 in actinic keratosis. Cancer Lett 264:145–161

    Article  CAS  PubMed  Google Scholar 

  12. Kawamoto K, Enokida H, Gotanda T, Kubo H, Nishiyama K, Kawahara M, Nakagawa M (2006) P16ink4a and p14arf methylation as a potential biomarker for human bladder cancer. Biochem Biophys Res Commun 339:790–796

    Article  CAS  PubMed  Google Scholar 

  13. Lassaletta L, Torres-Martin M, San-Roman-Montero J, Castresana JS, Gavilan J, Rey JA (2013) DNA copy gains of tumor-related genes in vestibular schwannoma. Eur Arch Otorhinolaryngol 270:2433–2438

    Article  PubMed  Google Scholar 

  14. Lecomte C, Andujar P, Renier A, Kheuang L, Abramowski V, Mellottee L, Fleury-Feith J, Zucman-Rossi J, Giovannini M, Jaurand MC (2005) Similar tumor suppressor gene alteration profiles in asbestos-induced murine and human mesothelioma. Cell Cycle 4:1862–1869

    Article  CAS  PubMed  Google Scholar 

  15. Liu Y, Bodmer WF (2006) Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines. Proc Natl Acad Sci USA 103:976–981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Martuza RL, Eldridge R (1988) Neurofibromatosis 2 (bilateral acoustic neurofibromatosis). N Engl J Med 318:684–688

    Article  CAS  PubMed  Google Scholar 

  17. Pager CT, Dutch RE (2005) Cathepsin l is involved in proteolytic processing of the hendra virus fusion protein. J Virol 79:12714–12720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Plotkin SR, Blakeley JO, Evans DG, Hanemann CO, Hulsebos TJ, Hunter-Schaedle K, Kalpana GV, Korf B, Messiaen L, Papi L, Ratner N, Sherman LS, Smith MJ, Stemmer-Rachamimov AO, Vitte J, Giovannini M (2013) Update from the 2011 international schwannomatosis workshop: from genetics to diagnostic criteria. Am J Med Genet A 161A:405–416

    Article  PubMed  Google Scholar 

  19. Rajaraman P, Wang SS, Rothman N, Brown MM, Black PM, Fine HA, Loeffler JS, Selker RG, Shapiro WR, Chanock SJ, Inskip PD (2007) Polymorphisms in apoptosis and cell cycle control genes and risk of brain tumors in adults. Cancer Epidemiol Biomarkers Prev 16:1655–1661

    Article  CAS  PubMed  Google Scholar 

  20. Sekido Y (2010) Genomic abnormalities and signal transduction dysregulation in malignant mesothelioma cells. Cancer Sci 101:1–6

    Article  CAS  PubMed  Google Scholar 

  21. Slack A, Chen Z, Tonelli R, Pule M, Hunt L, Pession A, Shohet JM (2005) The p53 regulatory gene mdm2 is a direct transcriptional target of mycn in neuroblastoma. Proc Natl Acad Sci USA 102:731–736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Stone S, Jiang P, Dayananth P, Tavtigian SV, Katcher H, Parry D, Peters G, Kamb A (1995) Complex structure and regulation of the p16 (mts1) locus. Cancer Res 55:2988–2994

    CAS  PubMed  Google Scholar 

  23. Voorhoeve PM, Agami R (2003) The tumor-suppressive functions of the human ink4a locus. Cancer Cell 4:311–319

    Article  CAS  PubMed  Google Scholar 

  24. Warren C, James LA, Ramsden RT, Wallace A, Baser ME, Varley JM, Evans DG (2003) Identification of recurrent regions of chromosome loss and gain in vestibular schwannomas using comparative genomic hybridisation. J Med Genet 40:802–806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Woods R, Friedman JM, Evans DG, Baser ME, Joe H (2003) Exploring the “two-hit hypothesis” in nf2: tests of two-hit and three-hit models of vestibular schwannoma development. Genet Epidemiol 24:265–272

    Article  PubMed  Google Scholar 

  26. Wu H, Chen Y, Wang ZY, Li W, Li JQ, Zhang L, Lu YJ (2010) Involvement of p21 (waf1) in merlin deficient sporadic vestibular schwannomas. Neuroscience 170:149–155

    Article  CAS  PubMed  Google Scholar 

  27. Xirodimas D, Saville MK, Edling C, Lane DP, Lain S (2001) Different effects of p14arf on the levels of ubiquitinated p53 and mdm2 in vivo. Oncogene 20:4972–4983

    Article  CAS  PubMed  Google Scholar 

  28. Yi C, Wilker EW, Yaffe MB, Stemmer-Rachamimov A, Kissil JL (2008) Validation of the p21-activated kinases as targets for inhibition in neurofibromatosis type 2. Cancer Res 68:7932–7937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant 2009CB521703 from 973 Program of China to Hao Wu and the Natural Science Foundation of China (30801286 and 30973307) to Hao Wu.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, Zy. & Wu, H. P14ARF deficiency and its correlation with overexpression of p53/MDM2 in sporadic vestibular schwannomas. Eur Arch Otorhinolaryngol 272, 2227–2234 (2015). https://doi.org/10.1007/s00405-014-3135-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-014-3135-y

Keywords

Navigation