Skip to main content

Advertisement

Log in

DNA copy gains of tumor-related genes in vestibular schwannoma

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

DNA copy gains are a common event in tumor growth. This study determines the gene dosage/amplification of seven tumor-related genes in patients undergoing vestibular schwannoma (VS) surgery and analyzes its clinical implications. Thirty-three patients undergoing surgery for VS were studied. Seven genes (EGFR, ERBB2, ERBB3, ERBB4, MDM2, MDM4, and NMYC) were analyzed by Quantitative real-time PCR. Copy gains were correlated with demographic, clinical and radiological data. Of the 33 samples, 48 % were positive for copy gains in at least one gene. There were no positive samples for gene amplification. A clinical correlation between tumor size and copy gains of ERBB2 was found. Patients with copy gains of this gene had larger tumors measured by diameter (p = 0.027) and volume (p = 0.005). Copy gains of EGFR, ERBB2, ERBB4, and MDM4 were associated with preoperative tinnitus. Contrary to other tumors of the central nervous system, development of VS does not appear to involve gene amplification. However, copy gains of certain tumor-related genes may play a role in the biological behavior of these neoplasms. Our findings support the role of ERBB2 in VS development and growth

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Slamon DJ, Godolphin W, Jones LA et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712

    Article  PubMed  CAS  Google Scholar 

  2. Berchuck A, Kamel A, Whitaker R et al (1990) Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res 50:4087–4091

    PubMed  CAS  Google Scholar 

  3. Abbott JJ, Erickson-Johnson M, Wang X et al (2006) Gains of COL1A1-PDGFB genomic copies occur in fibrosarcomatous transformation of dermatofibrosarcoma protuberans. Mod Pathol 19:1512–1518

    PubMed  CAS  Google Scholar 

  4. Arjona D, Bello MJ, Alonso ME et al (2005) Molecular analysis of the EGFR gene in astrocytic gliomas: mRNA expression, quantitative-PCR analysis of non-homogeneous gene amplification and DNA sequence alterations. Neuropathol Appl Neurobiol 31:384–394

    Article  PubMed  CAS  Google Scholar 

  5. Alonso ME, Bello MJ, Arjona D, Martinez V et al (2005) Real-time quantitative PCR analysis of gene dosages reveals gene amplification in low-grade oligodendrogliomas. Am J Clin Pathol 123:900–906

    Article  PubMed  CAS  Google Scholar 

  6. Franco-Hernandez C, Martinez-Glez V, Arjona D et al (2007) EGFR sequence variations and real-time quantitative polymerase chain reaction analysis of gene dosage in brain metastases of solid tumors. Cancer Genet Cytogenet 173:63–67

    Article  PubMed  CAS  Google Scholar 

  7. Twist EC, Ruttledge MH, Rousseau M et al (1994) The neurofibromatosis type 2 gene is inactivated in schwannomas. Hum Mol Genet 3:147–151

    Article  PubMed  CAS  Google Scholar 

  8. Mérel P, Hoang-Xuan K, Sanson M et al (1995) Predominant occurrence of somatic mutations of the NF2 gene in meningiomas and schwannomas. Genes Chromosom Cancer 13:211–216

    Article  PubMed  Google Scholar 

  9. Li W, You L, Cooper J, Schiavon G et al (2010) Merlin/NF2 suppresses tumorigenesis by inhibiting the E3 ubiquitin ligase CRL4(DCAF1) in the nucleus. Cell 140:477–490

    Article  PubMed  CAS  Google Scholar 

  10. Lallemand D, Manent J, Couvelard A et al (2009) Merlin regulates transmembrane receptor accumulation and signaling at the plasma membrane in primary mouse Schwann cells and in human schwannomas. Oncogene 28:854–865

    Article  PubMed  CAS  Google Scholar 

  11. Bai Y, Liu YJ, Wang H et al (2007) Inhibition of the hyaluronan-CD44 interaction by merlin contributes to the tumor-suppressor activity of merlin. Oncogene 26:836–850

    Article  PubMed  CAS  Google Scholar 

  12. Houshmandi SS, Emnett RJ, Giovannini M et al (2009) The neurofibromatosis 2 protein, merlin, regulates glial cell growth in an ErbB2- and Src-dependent manner. Mol Cell Biol 29:1472–1486

    Article  PubMed  CAS  Google Scholar 

  13. Okada M, Wang Y, Jang SW et al (2009) Akt phosphorylation of merlin enhances its binding to phosphatidylinositols and inhibits the tumor-suppressive activities of merlin. Cancer Res 69:4043–4051

    Article  PubMed  CAS  Google Scholar 

  14. Curto M, Cole BK, Lallemand D et al (2007) Contact-dependent inhibition of EGFR signaling by Nf2/Merlin. J Cell Biol 177:893–903

    Article  PubMed  CAS  Google Scholar 

  15. Fernandez-Valle C, Tang Y, Ricard J et al (2002) Paxillin binds schwannomin and regulates its density-dependent localization and effect on cell morphology. Nat Genet 31:354–362

    PubMed  CAS  Google Scholar 

  16. Scoles DR (2008) The merlin interacting proteins reveal multiple targets for NF2 therapy. Biochim Biophys Acta 1785:32–54

    PubMed  CAS  Google Scholar 

  17. Hamaratoglu F, Willecke M, Kango-Singh M et al (2006) The tumour-suppressor genes NF2/Merlin and expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 8:27–36

    Article  PubMed  CAS  Google Scholar 

  18. Gonzalez-Gomez P, Bello MJ, Alonso ME et al (2001) CpG island methylation in sporadic and neurofibromatis type 2-associated schwannomas. Clin Cancer Res 9:5601–5606

    Google Scholar 

  19. Bello MJ, Martinez-Glez V, Franco-Hernandez C et al (2007) DNA methylation pattern in 16 tumor-related genes in schwannomas. Cancer Genet Cytogenet 172:84–86

    Article  PubMed  CAS  Google Scholar 

  20. Lassaletta L, Bello MJ, Del Río L et al (2006) DNA methylation of multiple genes in vestibular schwannoma: relationship with clinical and radiological findings. Otol Neurotol 27:1180–1185

    Article  PubMed  Google Scholar 

  21. Lassaletta L, Patrón M, Del Río L et al (2007) Cyclin D1 expression and histopathologic features in vestibular schwannomas. Otol Neurotol 28:939–941

    Article  PubMed  Google Scholar 

  22. Hadfield KD, Smith MJ, Urquhart JE et al (2010) Rates of loss of heterozygosity and mitotic recombination in NF2 schwannomas, sporadic vestibular schwannomas and schwannomatosis schwannomas. Oncogene 29:6216–6221

    Article  PubMed  CAS  Google Scholar 

  23. Antinheimo J, Sallinen SL, Sallinen P et al (2000) Genetic aberrations in sporadic and neurofibromatosis 2 (NF2)-associated schwannomas studied by comparative genomic hybridization (CGH). Acta Neurochir (Wien) 142:1099–1104

    Article  CAS  Google Scholar 

  24. Warren C, James LA, Ramsden RT et al (2003) Identification of recurrent regions of chromosome loss and gain in vestibular schwannomas using comparative genomic hybridisation. J Med Genet 40:802–806

    Article  PubMed  CAS  Google Scholar 

  25. Ikeda T, Hashimoto S, Fukushige S et al (2005) Comparative genomic hybridization and mutation analyses of sporadic schwannomas. J Neurooncol 72:225–230

    Article  PubMed  CAS  Google Scholar 

  26. Koutsimpelas D, Felmeden U, Mann WJ et al (2011) Analysis of cytogenetic aberrations in sporadic vestibular schwannoma by comparative genomic hybridization. J Neurooncol 103:437–443

    Article  PubMed  Google Scholar 

  27. Martinez-Glez V, Franco-Hernandez C, Alvarez L et al (2009) Meningiomas and schwannomas: molecular subgroup classification found by expression arrays. Int J Oncol 34:493–504

    PubMed  CAS  Google Scholar 

  28. Prayson RA, Yoder BJ, Barnett GH (2007) Epidermal growth factor receptor is not amplified in schwannomas. Ann Diagn Pathol 11:326–329

    Article  PubMed  Google Scholar 

  29. Cayé-Thomasen P, Werther K, Nalla A et al (2005) VEGF and VEGF receptor-1 concentration in vestibular schwannoma homogenates correlates to tumor growth rate. Otol Neurotol 26:98–101

    Article  PubMed  Google Scholar 

  30. Rey JA, Bello MJ, Jimenez-Lara AM et al (1992) Loss of heterozygosity for distal markers on 22q in human gliomas. Int J Cancer 51:703–706

    Article  PubMed  CAS  Google Scholar 

  31. Arjona D, Bello MJ, Alonso ME et al (2004) Molecular analysis of the erbB gene family calmodulin-binding and calmodulin-like domains in astrocytic gliomas. Int J Oncol 25:1489–1494

    PubMed  CAS  Google Scholar 

  32. Riemenschneider MJ, Büschges R, Wolter M et al (1999) Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res 59:6091–6096

    PubMed  CAS  Google Scholar 

  33. Doherty JK, Ongkeko W, Crawley B, Andalibi A, Ryan AF (2008) ErbB and Nrg: potential molecular targets for vestibular schwannoma pharmacotherapy. Otol Neurotol 29:50–57

    Article  PubMed  Google Scholar 

  34. Clark JJ, Provenzano M, Diggelmann HR et al (2008) The ErbB inhibitors trastuzumab and erlotinib inhibit growth of vestibular schwannoma xenografts in nude mice: a preliminary study. Otol Neurotol 29:846–853

    Article  PubMed  Google Scholar 

  35. Hansen MR, Roehm PC, Chatterjee P et al (2006) Constitutive neuregulin-1/ErbB signaling contributes to human vestibular schwannoma proliferation. Glia 53:593–600

    Article  PubMed  Google Scholar 

  36. Baguley DM, Humphriss RL, Axon PR et al (2006) The clinical characteristics of tinnitus in patients with vestibular schwannoma. Skull Base 16:49–58

    Article  PubMed  Google Scholar 

  37. Selvanathan SK, Shenton A, Ferner R et al (2010) Further genotype–phenotype correlations in neurofibromatosis 2. Clin Genet 77:163–170

    Article  PubMed  CAS  Google Scholar 

  38. Agrawal Y, Clark JH, Limb CJ et al (2010) Predictors of vestibular schwannoma growth and clinical implications. Otol Neurotol 31:807–812

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Support for this work was provided by grants 07/0577 and 10/1972 from FIS, Ministerio de Sanidad.

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Lassaletta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lassaletta, L., Torres-Martín, M., San-Román-Montero, J. et al. DNA copy gains of tumor-related genes in vestibular schwannoma. Eur Arch Otorhinolaryngol 270, 2433–2438 (2013). https://doi.org/10.1007/s00405-012-2269-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-012-2269-z

Keywords

Navigation