Skip to main content

Advertisement

Log in

Photosensitizing effects of hypericin on head neck squamous cell carcinoma in vitro

  • Head and Neck
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Clinical outcome of patients suffering from head neck squamous cell carcinomas is still poor due to recurrent disease and surgical limitations. There is still a demand for multimodality approaches and new therapeutic options. Hypericin is a promising phototoxic drug which was investigated for its effects on head neck squamous cell carcinoma cells in vitro. FaDu cells incubated with or without hypericin were illuminated (450–700 nm, 50,000 lx) for different time periods. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide- and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay were used to score metabolic and apoptotic activity. Even after the shortest illumination FaDu cells incubated with hypericin showed massive reduction of metabolism and excessive apoptosis. This was present even with the lowest hypericin concentration. Cells without hypericin or without illumination were not affected. These photosensitizing effects of hypericin could be suitable for clinical application and could lead to the development of an intraoperative photodynamic therapy of head neck squamous cell carcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  2. Kim AJ, Suh JD, Sercarz JA, Abemayor E, Head C et al (2007) Salvage surgery with free flap reconstruction: factors affecting outcome after treatment of recurrent head and neck squamous carcinoma. Laryngoscope 117:1019–1023

    Article  PubMed  Google Scholar 

  3. Juarranz A, Jaén P, Sanz-Rodríguez F, Cuevas J, González S (2008) Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol 10:148–154

    Article  CAS  PubMed  Google Scholar 

  4. Bredell MG, Besic E, Maake C, Walt H (2010) The application and challenges of clinical PD-PDT in the head and neck region: a short review. J Photochem Photobiol B 101:185–190

    Article  CAS  PubMed  Google Scholar 

  5. Brockmann H, Haschad MN, Maier K, Pohl F (1939) Hypericin, the photodynamically active pigment from Hypericum perforatum. Naturwissenschaften 27:550

    Article  CAS  Google Scholar 

  6. Agostinis P, Vantieghem A, Merlevede W, de Witte PA (2002) Hypericin in cancer treatment: more light on the way. Int J Biochem Cell Biol 34:221–241

    Article  CAS  PubMed  Google Scholar 

  7. Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 1776:86–107

    CAS  PubMed  Google Scholar 

  8. Siboni G, Weitman H, Freeman D, Mazur Y, Malik Z et al (2002) The correlation between hydrophilicity of hypericins and helianthrone: internalization mechanisms, subcellular distribution and photodynamic action in colon carcinoma cells. Photochem Photobiol Sci 1:483–491

    Article  CAS  PubMed  Google Scholar 

  9. Kascakova S, Nadova Z, Mateasik A, Mikes J, Huntosova V et al (2008) High level of low-density lipoprotein receptors enhance hypericin uptake by U-87 MG cells in the presence of LDL. Photochem Photobiol 84:120–127

    CAS  PubMed  Google Scholar 

  10. Huygens A, Kamuhabwa AR, Roskams T, Van Cleynenbreugel B, Van Poppel H et al (2005) Permeation of hypericin in spheroids composed of different grade transitional cell carcinoma cell lines and normal human urothelial cells. J Urol 174:69–72

    Article  CAS  PubMed  Google Scholar 

  11. Ali SM, Olivo M (2002) Bio-distribution and subcellular localization of hypericin and its role in PDT induced apoptosis in cancer cells. Int J Oncol 21:531–540

    CAS  PubMed  Google Scholar 

  12. Karioti A, Bilia AR (2010) Hypericins as potential leads for new therapeutics. Int J Mol Sci 11:562–594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Rangan SR (1972) A new human cell line (FaDu) from a hypopharyngeal carcinoma. Cancer 29:117–121

    Article  CAS  PubMed  Google Scholar 

  14. Kubin A, Wierrani F, Burner U, Alth G, Grünberger W (2005) Hypericin—the facts about a controversial agent. Curr Pharm Des 11:233–253

    Article  CAS  PubMed  Google Scholar 

  15. Huygens A, Crnolatac I, Develter J, Van Cleynenbreugel B, Van der Kwast T et al (2008) Differential accumulation of hypericin in spheroids composed of T-24 transitional cell carcinoma cells expressing different levels of E-cadherin. J Urol 179:2014–2019

    Article  CAS  PubMed  Google Scholar 

  16. Seitz G, Warmann SW, Armeanu S, Heitmann H, Ruck P et al (2007) In vitro photodynamic therapy of childhood rhabdomyosarcoma. Int J Oncol 30:615–620

    CAS  PubMed  Google Scholar 

  17. VanderWerf QM, Saxton RE, Chang A, Horton D, Paiva MB et al (1996) Hypericin: a new laser phototargeting agent for human cancer cells. Laryngoscope 106:479–483

    Article  CAS  PubMed  Google Scholar 

  18. Seitz G, Krause R, Fuchs J, Heitmann H, Armeanu S et al (2008) In vitro photodynamic therapy in pediatric epithelial liver tumors promoted by hypericin. Oncol Rep 20:1277–1282

    CAS  PubMed  Google Scholar 

  19. Wessels JT, Busse AC, Rave-Fränk M, Zänker S, Hermann R et al (2008) Photosensitizing and radiosensitizing effects of hypericin on human renal carcinoma cells in vitro. Photochem Photobiol 84:228–235

    CAS  PubMed  Google Scholar 

  20. Theodossiou TA, Hothersall JS, De Witte PA, Pantos A, Agostinis P (2009) The multifaceted photocytotoxic profile of hypericin. Mol Pharm 6:1775–1789

    Article  CAS  PubMed  Google Scholar 

  21. Wang X, Guo Y, Yang S, Wang C, Fu X et al (2010) Cellular and molecular mechanisms of photodynamic hypericin therapy for nasopharyngeal carcinoma cells. J Pharmacol Exp Ther 334:847–853

    Article  CAS  PubMed  Google Scholar 

  22. Agostinis P, Assefa Z, Vantieghem A, Vandenheede JR, Merlevede W et al (2000) Apoptotic and anti-apoptotic signaling pathways induced by photodynamic therapy with hypericin. Adv Enzyme Regul 40:157–182

    Article  CAS  PubMed  Google Scholar 

  23. Sanovic R, Krammer B, Grumboeck S, Verwanger T (2009) Time-resolved gene expression profiling of human squamous cell carcinoma cells during the apoptosis process induced by photodynamic treatment with hypericin. Int J Oncol 35:921–939

    CAS  PubMed  Google Scholar 

  24. Ali SM, Olivo M (2003) Mechanisms of action of phenanthroperylenequinones in photodynamic therapy (review). Int J Oncol 22:1181–1191

    CAS  PubMed  Google Scholar 

  25. Blank M, Lavie G, Mandel M, Hazan S, Orenstein A et al (2004) Antimetastatic activity of the photodynamic agent hypericin in the dark. Int J Cancer 111:596–603

    Article  CAS  PubMed  Google Scholar 

  26. Martínez-Poveda B, Quesada AR, Medina MA (2005) Hypericin in the dark inhibits key steps of angiogenesis in vitro. Eur J Pharmacol 516:97–103

    Article  PubMed  Google Scholar 

  27. Besic Gyenge E, Forny P, Lüscher D, Laass A, Walt H et al (2012) Effects of hypericin and a chlorin based photosensitizer alone or in combination in squamous cell carcinoma cells in the dark. Photodiagn Photodyn Ther 9:321–331

    Article  CAS  Google Scholar 

  28. Jerjes W, Upile T, Petrie A, Riskalla A, Hamdoon Z et al (2010) Clinicopathological parameters, recurrence, locoregional and distant metastasis in 115 T1–T2 oral squamous cell carcinoma patients. Head Neck Oncol 2:9

    Article  PubMed Central  PubMed  Google Scholar 

  29. Traynor NJ, Beattie PE, Ibbotson SH, Moseley H, Ferguson J et al (2005) Photogenotoxicity of hypericin in HaCaT keratinocytes: implications for St. John’s Wort supplements and high dose UVA-1 therapy. Toxicol Lett 158:220–224

    Article  CAS  PubMed  Google Scholar 

  30. Kah JC, Lau WK, Tan PH, Sheppard CJ, Olivo M (2008) Endoscopic image analysis of photosensitizer fluorescence as a promising noninvasive approach for pathological grading of bladder cancer in situ. J Biomed Opt 13:054022

    Article  PubMed  Google Scholar 

  31. Alecu M, Ursaciuc C, Hãlãlãu F, Coman G, Merlevede W et al (1998) Photodynamic treatment of basal cell carcinoma and squamous cell carcinoma with hypericin. Anticancer Res 18:4651–4654

    CAS  PubMed  Google Scholar 

  32. Olivo M, Fu CY, Raghavan V, Lau WK (2012) New frontier in hypericin-mediated diagnosis of cancer with current optical technologies. Ann Biomed Eng 40:460–473

    Article  PubMed Central  PubMed  Google Scholar 

  33. Ritz R, Müller M, Weller M, Dietz K, Kuci S et al (2005) Hypericin: a promising fluorescence marker for differentiating between glioblastoma and neurons in vitro. Int J Oncol 27:1543–1549

    CAS  PubMed  Google Scholar 

  34. Ritz R, Daniels R, Noell S, Feigl GC, Schmidt V et al (2012) Hypericin for visualization of high grade gliomas: first clinical experience. Eur J Surg Oncol 38:352–360

    Article  CAS  PubMed  Google Scholar 

  35. Thong PS, Olivo M, Chin WW, Bhuvaneswari R, Mancer K et al (2009) Clinical application of fluorescence endoscopic imaging using hypericin for the diagnosis of human oral cavity lesions. Br J Cancer 101:1580–1584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Head CS, Luu Q, Sercarz J, Saxton R (2006) Photodynamic therapy and tumor imaging of hypericin-treated squamous cell carcinoma. World J Surg Oncol 4:87

    Article  PubMed Central  PubMed  Google Scholar 

  37. Gerstner AO, Laffers W, Schade G, Göke F, Martin R, Thies B (2012) Endoscopy of the larynx by hyperspectral imaging. HNO 60:1047–1052

    Article  CAS  PubMed  Google Scholar 

  38. Gerstner AO, Martin R, Westermann S, Mahlein AK, Schmidt K, Thies B, Laffers W (2013) Hyperspectral imaging in head & neck oncology. Laryngorhinootologie 92:453–457

    Article  CAS  PubMed  Google Scholar 

  39. Li J, Oyen R, Verbruggen A, Ni Y (2013) Small Molecule Sequential Dual-Targeting Theragnostic Strategy (SMSDTTS): from preclinical experiments towards possible clinical anticancer applications. J Cancer 4:133–145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was not supported by any grant.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiebke Laffers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laffers, W., Busse, AC., Mahrt, J. et al. Photosensitizing effects of hypericin on head neck squamous cell carcinoma in vitro. Eur Arch Otorhinolaryngol 272, 711–718 (2015). https://doi.org/10.1007/s00405-014-2984-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-014-2984-8

Keywords

Navigation