Skip to main content

Advertisement

Log in

Comparative analysis of the epithelium stroma interaction of acquired middle ear cholesteatoma in children and adults

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

In the clinical setting, pediatric cholesteatomas frequently behave more aggressively than similar lesions in adults. The reason for the difference in behavior is still unclear. The purpose of the present study was to investigate the cell to cell and epithelial–stroma interaction of acquired cholesteatoma in adults and children and search for differences on the cellular level, which might explain the different behavior of these lesions. Operative specimens of 54 patients [40 adults (average age of 39.7 years), 14 children (average age of 8.3 years)] who underwent primary surgery for an acquired cholesteatoma of the middle ear were examined by histopathology and DNA-image cytometry (DNA-ICM). Immunohistochemical investigations included expression of proliferation markers (proliferation cell nuclear antigen and MIB-1) along with cell surface markers reflecting the cell-to-cell interaction (i.e. α1β6-integrin, E-cadherin, I-CAM = CD54), and the epithelial to stroma interaction (i.e. αv and β3 intergin chains, V-CAM = CD106, CD44v6 and fibronectin). Pediatric cholesteatomas demonstrated higher incidence of acute inflammation and more extensive disease relative to those from the adults. Indices of DNA-ICM, however, revealed normal diploid DNA content in both groups. Higher proliferation scores occurred in the pediatric group compared to adult cholesteatoma. Cell surface markers and cell adhesion molecules were equally expressed in both groups except α1β6-integrin and fibronectin, which were over expressed in pediatric cholesteatomas. Statistically, however, these differences showed only a trend towards significance. According to the results of the present study, pediatric and adult cholesteatomas do not show any marked differences on the cellular level. Thus the observed clinical more aggressive behavior of pediatric cholesteatoma is likely due to other secondary factors such as more intense inflammation, disturbed middle ear ventilation or the diminished calcium salt content of pediatric bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Albino AP, Kimmelman CP, Parisier SC (1998) Cholesteatoma: a molecular and cellular puzzle. Am J Otol 19:7–19

    PubMed  CAS  Google Scholar 

  2. Stammberger M, Bujia J, Kastenbauer E (1995) Alteration of epidermal differentiation in middle ear cholesteatoma. Am J Otol 16:527–531

    PubMed  CAS  Google Scholar 

  3. Sastry KV, Sharma SC, Mann SB, Ganguly NK, Panda NK (1999) Aural cholesteatoma: role of tumor necrosis factor-alpha in bone destruction. Am J Otol 20:158–161

    PubMed  CAS  Google Scholar 

  4. Amar MS, Wishahi HF, Zakhary MM (1996) Clinical and biochemical studies of bone destruction in cholesteatoma. J Laryngol Otol 110:534–539

    PubMed  CAS  Google Scholar 

  5. Yan SD, Huang CC (1991) The role of tumor necrosis factor-alpha in bone resorption of cholesteatoma. Am J Otolaryngol 12:83–89

    Article  PubMed  CAS  Google Scholar 

  6. Shohet JA, de Jong AL (2002) The management of pediatric cholesteatoma. Otolaryngol Clin North Am 35:841–851

    Article  PubMed  Google Scholar 

  7. Mallet Y, Nouwen J, Lecomte-Houcke M, Desaulty A (2003) Aggressiveness and quantification of epithelial proliferation of middle ear cholesteatoma by MIB1. Laryngoscope 113:328–331

    Article  PubMed  CAS  Google Scholar 

  8. Feulgen R, Rossenbeck H (1924) Mikroskopisch chemischer Nachweis einer Nucleinsäure vom Typus der Thymonucleinsäure und die darauf beruhende elektive Färbung von Zellkernen in mikroskopischen Präparaten. Z Physiol Chem 135:203–248

    CAS  Google Scholar 

  9. Böcking A (1990) DNA-cytometry and automation in clinical diagnosis. Verh Dtsch Ges Pathol 74:176–185

    PubMed  Google Scholar 

  10. Lang S, Nerlich A, Wiest I, Schreiner M (1994) Immunohistochemical analysis of the basement membrane in cholesteatoma epithelium. Laryngorhinootol 73:371–374

    CAS  Google Scholar 

  11. Marenda SA, Aufdemorte TB (1995) Localization of cytokines in cholesteatoma tissue. Otolaryngol Head Neck Surg 112:359–368

    Article  PubMed  CAS  Google Scholar 

  12. Hamzei M, Ventriglia G, Hagnia M, Antonopolous A, Bernal Sprekelsen M, Dazert S, Hildmann H, Sudhoff H (2003) Osteoclast stimulating and differentiating factors in human cholesteatoma. Laryngoscope 113:436–442

    Article  PubMed  CAS  Google Scholar 

  13. Sudhoff H, Bujia J, Borkowski G, Koc C, Holly A, Hildmann H, Fisseler-Eckhoff A (1996) Basement membrane in middle ear cholesteatoma. Immunohistochemical and ultrastructural observations. Ann Otol Rhinol Laryngol 105:804–810

    PubMed  CAS  Google Scholar 

  14. Huang D, Han D (2003) Clinic feathers of cholesteatoma in children. Lin Chuang Er Bi Yan Hou Ke Za Zhi 17:193–195

    PubMed  Google Scholar 

  15. Lavezzi A, Mantovani M, Cazzulo A, Turconi P, Matturri L (1998) Significance of trisomy 7 related to PCNA index in cholesteatoma. Am J Otolaryngol 19:109–112

    Article  PubMed  CAS  Google Scholar 

  16. Desloge RB, Carew JF, Finstad CL, Steiner MG, Sassoon J, Levenson MJ, Staiano-Coico L, Parisier SC, Albino AP (1997) DNA analysis of human cholesteatomas. Am J Otol 18:155–159

    PubMed  CAS  Google Scholar 

  17. Jacob R, Welkoborsky HJ, Mann WJ (2001) Epithelium–stroma interaction in cholesteatoma of the middle ear. Laryngorhinootologie 80:11–17

    Article  PubMed  CAS  Google Scholar 

  18. Cui Y, Pan H, Gao Q (2001) DNA character of cholesteatoma. Lin Chuang Er Bi Yan Hou Ke Za Zhi 15:62–63

    PubMed  CAS  Google Scholar 

  19. Motamed M, Powe D, Jones L, Kendall C, Banerjee AR (2000) Are p53 and MIB-1 overexpressed in cholesteatoma? Clin Otolaryngol 25:570–576

    Article  PubMed  Google Scholar 

  20. Motamed M, Powe D, Kendall C, Birchall JP, Banerjee AR (2002) P53 expression and keratinocyte hyperproliferation in middle ear cholesteatoma. Clin Otolaryngol 27:505–508

    Article  PubMed  CAS  Google Scholar 

  21. Huisman MA, De Heer E, Grote JJ (2003) Cholesteatoma epithelium is characterized by increased expression of Ki-67, p53 and p21, with minimal apoptosis. Acta Otolaryngol 123:377–382

    PubMed  Google Scholar 

  22. Yu Q, Jin K (2001) A study on the state of cell proliferation and apoptosis in human middle ear cholesteatoma. Lin Chuang Er Bi Yan Hou Ke Za Zhi 15:450–451

    PubMed  CAS  Google Scholar 

  23. Olszewska E, Chodynicki S, Chyczewski L (2003) Evaluation of epithelial proliferation and apoptosis in cholesteatoma of adults. Otolaryngol Pol 57:85–89

    PubMed  Google Scholar 

  24. Durko M, Kaczmarczyk D (2004) Proliferation activity and apoptosis in granulation tissue and cholesteatoma in middle ear reoperations. Folia Morphol (Warsz.) 63:119–121

    Google Scholar 

  25. Sudhoff H, Bujia J, Fisseler-Eckhoff A, Holly A, Schulz-Flake C, Hildmann H (1995) Expression of a cell-cycle-associated nuclear antigen (MIB1) in cholesteatoma and auditory meatal skin. Laryngoscope 105:1227–1231

    Article  PubMed  CAS  Google Scholar 

  26. Bernal Sprekelsen M, Ebmeyer J, Buchbinder A, Sudhoff H (2000) Comparative analysis of the proliferative capacity of cholesteatomas. Acta Otorrinolaryngol Esp 51:299–307

    CAS  Google Scholar 

  27. Hoppe F (1995) An investigation of the proliferation potential in cholesteatoma. HNO 43:710–715

    PubMed  CAS  Google Scholar 

  28. Bujia J, Sudhoff H, Holly A, Hildmann H, Kastenbauer E (1996) Immunohistochemical detection of proliferating cell nuclear antigen in middle ear cholesteatoma. Eur Arch Otorhinolaryngol 253:21–24

    PubMed  CAS  Google Scholar 

  29. Tanaka Y, Shiwa M, Kojima H, Miyazaki H, Kamide Y, Moriyama H (1998) A study on epidermal proliferation ability in cholesteatoma. Laryngoscope 108:537–542

    Article  PubMed  CAS  Google Scholar 

  30. Li H, Jiang P, Wang L (2002) Immunohistochemical study of the epithelial hyperproliferation in middle ear cholesteatoma. Zhonghua Er Bi Yan Hou Ke Za Zhi 37:118–120

    PubMed  Google Scholar 

  31. Hassmann-Poznanska E, Skotnicka B, Dzieciol J (2003) Markers of epidermal proliferation in middle ear cholesteatoma. Otolaryngol Pol 57:505–511

    PubMed  Google Scholar 

  32. Maraki D, Becker J, Boecking A (2004) Cytologic and DNA-cytometric very early diagnosis of cancer. J Oral Pathol Med 33:398–404

    Article  PubMed  CAS  Google Scholar 

  33. Welkoborsky HJ, Gluckman JL, Jacob R, Bernauer H, Mann WJ (1999) Tumorbiologic prognostic parameters in T1N0M0 squamous cell carcinoma of the oral cavity. Larnygorhinootol 78:131–138

    CAS  Google Scholar 

  34. Yildirim MS, Ozturk K, Acar H, Arbag H, Ulku CH (2003) Chromosome 8 aneuploidy in acquired cholesteatoma. Acta Otolaryngol 123:372–376

    PubMed  Google Scholar 

  35. Rao VV, Schnittger S, Hansmann I (1991) Chromosomal localization of the human proliferating cell nuclear antigen (PCNA) gene to or close to 20p12 by in situ hybridization. Cytogenet Cell Genet 56:169–170

    PubMed  CAS  Google Scholar 

  36. Taniguchi Y, Katsumata Y, Koido S, Suemizu H, Yoshimura S, Moriuchi T, Okumura K, Kagotani K, Taguchi H, Imanishi T, Gojobori T, Inoko H (1996) Cloning, sequencing, and chromosomal localization of two tandemly arranged human pseudogenes for the proliferating cell nuclear antigen (PCNA). Mamm Genome 7:906–908

    Article  PubMed  CAS  Google Scholar 

  37. Olszewska E, Lautermann J, Koc C, Schwaab M, Dazert S, Hildmann H, Sudhoff H (2005) Cytokeratin expression pattern in congenital and acquired pediatric cholesteatoma. Eur Arch Otorhinolaryngol 262:731–736

    Article  PubMed  Google Scholar 

  38. Breitkreutz D, Stark HJ, Mirancea N, Tomakidi P, Steinbauer H, Fusenig NE (1997) Integrin and basement membrane normalization in mouse grafts of human keratinocytes—implications for epidermal hemostasis. Differentiation 61:195–209

    Article  PubMed  CAS  Google Scholar 

  39. Naim R, Riedel F, Bran G, Hormann K (2003) Expression of beta-catenin in external auditory canal cholesteatoma. Biofactors 19:189–195

    PubMed  CAS  Google Scholar 

  40. Akimoto R, Pawankar R, Yagi T, Baba S (2000) Acquired and congenital cholesteatoma: determination of tumor necrosis factor-alpha, intercellular adhesion molecule-1, interleukin-1-alpha and lymphocyte functional antigen-1 in the inflammatory process. ORL J Otorhinolaryngol Relat Spec 62:257–265

    PubMed  CAS  Google Scholar 

  41. Kim HJ, Tinling SP, Chole RA (2001) Expression patterns of cytokeratin in retraction pocket cholesteatomas. Laryngoscope 111:1032–1036

    Article  PubMed  CAS  Google Scholar 

  42. Yetiser S, Satar B, Aydin N (2002) Expression of epidermal growth factor, tumor necrosis factor-alpha, and inetrleukin-1 alpha in chronic otitis media with or without cholesteatoma. Otol Neurotol 23:647–652

    Article  PubMed  Google Scholar 

  43. Dallari S, Cavani A, Bergamini G, Girolomoni G (1994) Integrin expression in middle ear cholesteatoma. Acta Otolaryngol 114:188–192

    PubMed  CAS  Google Scholar 

  44. Shinoda H, Huang CC (1995) Localization of intercellular adhesion molecule-1 in middle ear cholesteatoma. Eur Arch Otorhinolaryngol 252:385–390

    Article  PubMed  CAS  Google Scholar 

  45. Bujia J, Holly A, Stammberger M, Sudhoff H (1996) Angiogenesis in cholesteatoma of the middle ear. Acta Otorrinolaringol Esp 47:187–192

    PubMed  CAS  Google Scholar 

  46. Schilling V, Holly A, Bujia J, Schulz P, Kastenbauer E (1995) High levels of fibronectin in the stroma of aural cholesteatoma. Am J Otolaryngol 16:232–235

    Article  PubMed  CAS  Google Scholar 

  47. Bernal Sprekelsen M, Ebmeyer J, Anonopoulos A, Borkowski G, Sudhoff H (2001) Alterations of the basal membrane in middle ear cholesteatoma. Acta Otorrinolaryngol Esp 52:330–335

    CAS  Google Scholar 

  48. Yamamoto-Fukuda T, Aoki D, Hishikawa Y, Kobayashi, Takahashi H, Koji T (2003) Possible involvement of keratinocyte growth factor and its receptor in enhanced epithelial-cell proliferation and acquired recurrence of middle-ear cholesteatoma. Lab Invest 83:123–136

    PubMed  CAS  Google Scholar 

  49. Banerjee AR, Jones JL, Birchall JP, Powe DG (2001) Localization of matrix metalloproteinase 1 in cholesteatoma and deep meatal skin. Otol Neurotol 22:579–581

    Article  PubMed  CAS  Google Scholar 

  50. Bayazit YA, Karakok M, Ucak R, Kanlikama M (2001) Cycline-dependent kinase inhibitor, p27 (KIP1), is associated with cholesteatoma. Laryngoscope 111:1037–1041

    Article  PubMed  CAS  Google Scholar 

  51. Wilmoth JG, Schultz GS, Antonelli PJ (2003) Tympanic membrane metalloproteinase inflammatory response. Otolaryngol Head Neck Surg 129:647–654

    Article  PubMed  Google Scholar 

  52. Wilmoth JG, Schultz GS, Antonelli PJ (2003) Matrix metalloproteinases in a gerbil cholesteatoma model. Otolaryngol Head Neck Surg 129:402–407

    Article  PubMed  Google Scholar 

  53. Tokuriki M, Noda I, Saito T, Narita N, Sunaga H, Tsuzuki H, Ohtsubo T, Fujieda S, Saito H (2003) Gene expression analysis of human middle ear cholesteatoma using complementary DNA arrays. Laryngoscope 113:808–814

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-J. Welkoborsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welkoborsky, HJ., Jacob, R.S. & Hinni, M.L. Comparative analysis of the epithelium stroma interaction of acquired middle ear cholesteatoma in children and adults. Eur Arch Otorhinolaryngol 264, 841–848 (2007). https://doi.org/10.1007/s00405-007-0328-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-007-0328-7

Keywords

Navigation