Skip to main content

Advertisement

Log in

Stem cell therapy for premature ovarian insufficiency: a systematic review and meta-analysis of animal and clinical studies

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

The aim of this systematic review and meta-analysis is to evaluate the efficacy of stem cell therapy in mouse models of POI and patients with POI.

Methods

The PubMed, Web of Science, and Embase databases were searched from inception to February 2022 for relevant animal and clinical studies. The reference lists of the included reviews were manually searched to identify additional eligible studies. Data were independently extracted by two investigators, and disagreements were resolved by discussion. SYRCLE’s risk of bias tool and the MINORS tool were used to assess the quality of animal and clinical studies by two independent investigators. All statistical analyses were conducted using Review Manager 5.3 software.

Results

A total of twenty animal studies and six clinical studies were included in this meta-analysis. In animal studies, the results showed that stem cells could improve hormone levels, follicle count, estrous cycle and pregnancy outcome. For hormone levels, stem cells increased serum E2 and AMH levels and decreased serum FSH and LH levels compared with the control group (serum E2 level: SMD: 5.05, 95% CI 4.21–5.90, P < 0.00001; serum AMH level: SMD: 4.42, 95% CI 3.06–5.79, P < 0.00001; serum FSH level: SMD: − 3.79, 95% CI − 4.87 to –  2.70, P < 0.00001; serum LH level: SMD: − 1.31, 95% CI − 1.65 to − 0.96, P < 0.00001). All follicle counts, except for the antral follicle count, were significantly changed compared with the control group. (primordial follicle count: SMD: 4.61, 95% CI 3.65–5.56, P < 0.00001; primary follicle count: SMD: 3.35, 95% CI 1.08–5.63, P = 0.004; secondary follicle count: SMD: 3.23, 95% CI 1.92–4.55, P < 0.00001; total follicle count: SMD: 4.84, 95% CI 2.86–6.83, P < 0.00001; oocyte count: SMD: 7.56, 95% CI 5.92–9.20, P < 0.00001; atretic follicle count: SMD: − 1.79, 95% CI − 2.59 to − 1.00, P < 0.00001). For the estrous cycle, stem cell therapy increased the number of estrous cycles (WMD: 2.72, 95% CI 2.07–3.37, P < 0.00001) and decreased the duration of the estrous cycle (WMD: − 1.26, 95% CI − 1.84 to − 0.69, P < 0.0001) compared with the control group. For pregnancy outcomes, stem cell therapy increased the fertility rate (RR: 3.00, 95% CI 1.74–5.17, P < 0.0001) and litter size (WMD: 3.82, 95% CI 0.36–7.28, P = 0.03) compared with the control group. In animal studies, the asymmetric funnel plot of serum E2 and FSH levels indicated the possibility of publication bias. Unpublished and negative studies may be the source of publication bias. In clinical studies, the results showed that stem cell therapy could decrease serum FSH level (MD: − 30.32, 95% CI − 59.03 to − 1.01, P = 0.04) and increase AFC (MD: 1.07, 95% CI 0.70–1.43, P < 0.00001), pregnancy rate (RD: 0.19, 95% CI 0.04–0.34, P = 0.01) and live birth rate (RD: 0.19, 95% CI 0.07–0.31, P = 0.001) in POI patients. In addition, there was no significant difference in menstrual function regained (RD: 0.22, 95% CI − 0.03–0.46, P = 0.09), oocytes retrieved (MD: 1.00, 95% CI − 0.64–2.64, P = 0.23) and embryos (MD: 0.80, 95% CI − 0.15–1.76, P = 0.10) between different groups.

Conclusion

This meta-analysis suggested that stem cell therapy might be effective in POI mouse models and patients and could be considered a potential treatment to restore fertility capability in POI patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the manuscript (https://doi.org/10.1007/s00404-023-07062-0) and/or its supplementary information files.

References

  1. Webber L, Davies M, Anderson R et al (2016) ESHRE guideline: management of women with premature ovarian insufficiency. Hum Reprod 31:926–937. https://doi.org/10.1093/humrep/dew027

    Article  CAS  PubMed  Google Scholar 

  2. Podfigurna-Stopa A, Czyzyk A, Grymowicz M et al (2016) Premature ovarian insufficiency: the context of long-term effects. J Endocrinol Invest 39:983–990. https://doi.org/10.1007/s40618-016-0467-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kalu E, Panay N (2008) Spontaneous premature ovarian failure: management challenges. Gynecol Endocrinol 24:273–279. https://doi.org/10.1080/09513590801990764

    Article  PubMed  Google Scholar 

  4. Laml T, Schulz-Lobmeyr I, Obruca A et al (2000) Premature ovarian failure: etiology and prospects. Gynecol Endocrinol 14:292–302. https://doi.org/10.3109/09513590009167696

    Article  CAS  PubMed  Google Scholar 

  5. Slopień R, Warenik-Szymankiewicz A (2014) Premature ovarian failure: diagnosis and treatment. Clin Exp Obstet Gynecol 41:659–661

    Article  PubMed  Google Scholar 

  6. Chen H, Liu C, Zhu S et al (2021) The therapeutic effect of stem cells on chemotherapy-induced premature ovarian failure. Curr Mol Med 21:376–384. https://doi.org/10.2174/1566524020666200905113907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gupta S, Lodha P, Karthick MS et al (2018) Role of autologous bone marrow-derived stem cell therapy for follicular recruitment in premature ovarian insufficiency: review of literature and a case report of world’s first baby with ovarian autologous stem cell therapy in a perimenopausal woman of age 45 year. J Hum Reprod Sci 11:125–130. https://doi.org/10.4103/jhrs.JHRS_57_18

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mashayekhi M, Mirzadeh E, Chekini Z et al (2021) Evaluation of safety, feasibility and efficacy of intra-ovarian transplantation of autologous adipose derived mesenchymal stromal cells in idiopathic premature ovarian failure patients: non-randomized clinical trial, phase I, first in human. J Ovarian Res 14:5. https://doi.org/10.1186/s13048-020-00743-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hooijmans CR, Rovers MM, de Vries RB et al (2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14:43. https://doi.org/10.1186/1471-2288-14-43

    Article  PubMed  PubMed Central  Google Scholar 

  11. Slim K, Nini E, Forestier D et al (2003) Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg 73:712–716. https://doi.org/10.1046/j.1445-2197.2003.02748.x

    Article  PubMed  Google Scholar 

  12. Liu T, Huang Y, Zhang J et al (2014) Transplantation of human menstrual blood stem cells to treat premature ovarian failure in mouse model. Stem Cells Develop 23:1548–1557. https://doi.org/10.1089/scd.2013.0371

    Article  CAS  Google Scholar 

  13. Wang Z, Wang Y, Yang T et al (2017) Study of the reparative effects of menstrual-derived stem cells on premature ovarian failure in mice. Stem Cell Res Ther. https://doi.org/10.1186/s13287-016-0458-1

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li J, Yu Q, Huang H et al (2018) Human chorionic plate-derived mesenchymal stem cells transplantation restores ovarian function in a chemotherapy-induced mouse model of premature ovarian failure. Stem Cell Res Ther. https://doi.org/10.1186/s13287-018-0819-z

    Article  PubMed  PubMed Central  Google Scholar 

  15. Feng P, Li P, Tan J (2019) Human menstrual blood-derived stromal cells promote recovery of premature ovarian insufficiency via regulating the ECM-dependent FAK/AKT signaling. Stem cell Rev Reports 15:241–255. https://doi.org/10.1007/s12015-018-9867-0

    Article  CAS  Google Scholar 

  16. Guo F, Xia T, Zhang Y et al (2019) Menstrual blood derived mesenchymal stem cells combined with Bushen Tiaochong recipe improved chemotherapy-induced premature ovarian failure in mice by inhibiting GADD45b expression in the cell cycle pathway. Reprod Biol Endocrinol 17:56. https://doi.org/10.1186/s12958-019-0499-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang Y, Lei L, Wang S et al (2019) Transplantation of umbilical cord-derived mesenchymal stem cells on a collagen scaffold improves ovarian function in a premature ovarian failure model of mice. In Vitro Cell Dev Biol Anim 55:302–311. https://doi.org/10.1007/s11626-019-00337-4

    Article  CAS  PubMed  Google Scholar 

  18. Bahrehbar K, Rezazadeh Valojerdi M, Esfandiari F et al (2020) Human embryonic stem cell-derived mesenchymal stem cells improved premature ovarian failure. World J Stem Cells 12:857–878. https://doi.org/10.4252/wjsc.v12.i8.857

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jalalie L, Rezaee MA, Rezaie MJ et al (2021) Human umbilical cord mesenchymal stem cells improve morphometric and histopathologic changes of cyclophosphamide-injured ovarian follicles in mouse model of premature ovarian failure. Acta Histochem 123:151658. https://doi.org/10.1016/j.acthis.2020.151658

    Article  CAS  PubMed  Google Scholar 

  20. Deng T, He J, Yao Q et al (2021) Human umbilical cord mesenchymal stem cells improve ovarian function in chemotherapy-induced premature ovarian failure mice through inhibiting apoptosis and inflammation via a paracrine mechanism. Reprod Sci 28:1718–1732. https://doi.org/10.1007/s43032-021-00499-1

    Article  CAS  PubMed  Google Scholar 

  21. Badawy A, Sobh MA, Ahdy M et al (2017) Bone marrow mesenchymal stem cell repair of cyclophosphamide-induced ovarian insufficiency in a mouse model. Int J Womens Health. https://doi.org/10.2147/ijwh.S134074

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yin N, Wang Y, Lu X et al (2018) hPMSC transplantation restoring ovarian function in premature ovarian failure mice is associated with change of Th17/Tc17 and Th17/Treg cell ratios through the PI3K/Akt signal pathway. Stem Cell Res Ther 9:1–14. https://doi.org/10.1186/s13287-018-0772-x

    Article  CAS  Google Scholar 

  23. Zhang H, Luo Q, Lu X et al (2018) Effects of hPMSCs on granulosa cell apoptosis and AMH expression and their role in the restoration of ovary function in premature ovarian failure mice. Stem Cell Res Ther. https://doi.org/10.1186/s13287-017-0745-5

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu R, Zhang X, Fan Z et al (2019) Human amniotic mesenchymal stem cells improve the follicular microenvironment to recover ovarian function in premature ovarian failure mice. Stem Cell Res Ther. https://doi.org/10.1186/s13287-019-1315-9

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shen J, Cao D, Sun J-L (2020) Ability of human umbilical cord mesenchymal stem cells to repair chemotherapy-induced premature ovarian failure. World J Stem Cells 12:277–287. https://doi.org/10.4252/wjsc.v12.i4.277

    Article  PubMed  PubMed Central  Google Scholar 

  26. He J, Wang J, Li Y et al (2021) Effects of umbilical cord mesenchymal stem cells on expression of CYR61, FSH and AMH in mice with premature ovarian failure. Cell Mol Biol (Noisy-le-grand) 67:358–366. https://doi.org/10.14715/cmb/2021.67.5.41

    Article  Google Scholar 

  27. Wang S, Yu L, Sun M et al (2013) The therapeutic potential of umbilical cord mesenchymal stem cells in mice premature ovarian failure. Biomed Res Int 2013:690491. https://doi.org/10.1155/2013/690491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lai D, Wang F, Dong Z et al (2014) Skin-derived mesenchymal stem cells help restore function to ovaries in a premature ovarian failure mouse model. Plos One. https://doi.org/10.1371/journal.pone.0098749

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xiao GY, Liu IH, Cheng CC et al (2014) Amniotic fluid stem cells prevent follicle atresia and rescue fertility of mice with premature ovarian failure induced by chemotherapy. PLoS One 9:e106538. https://doi.org/10.1371/journal.pone.0106538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao Y, Ma J, Yi P et al (2020) Human umbilical cord mesenchymal stem cells restore the ovarian metabolome and rescue premature ovarian insufficiency in mice. Stem Cell Res Ther. https://doi.org/10.1186/s13287-020-01972-5

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lv X, Guan C, Li Y et al (2021) Effects of single and multiple transplantations of human umbilical cord mesenchymal stem cells on the recovery of ovarian function in the treatment of premature ovarian failure in mice. J Ovarian Res 14:119. https://doi.org/10.1186/s13048-021-00871-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gabr H, Elkheir WA, El-Gazza A (2016) Autologous stem cell transplantation in patients with idiopathic premature ovarian failure. J Tissue Sci Eng 7:27

    Google Scholar 

  33. Edessy M, Hosni HN, Shady Y et al (2016) Autologous stem cells therapy, the first baby of idiopathic premature ovarian failure. Acta Medial Int 3:19–23

    Article  Google Scholar 

  34. Herraiz S, Romeu M, Buigues A et al (2018) Autologous stem cell ovarian transplantation to increase reproductive potential in patients who are poor responders. Fertil Steril 110:496-505.e491. https://doi.org/10.1016/j.fertnstert.2018.04.025

    Article  PubMed  Google Scholar 

  35. Ding L, Yan G, Wang B et al (2018) Transplantation of UC-MSCs on collagen scaffold activates follicles in dormant ovaries of POF patients with long history of infertility. Sci China Life Sci 61:1554–1565. https://doi.org/10.1007/s11427-017-9272-2

    Article  CAS  PubMed  Google Scholar 

  36. Zafardoust S, Kazemnejad S, Darzi M et al (2020) Improvement of pregnancy rate and live birth rate in poor ovarian responders by intraovarian administration of autologous menstrual blood derived- mesenchymal stromal cells: phase I/II clinical trial. Stem Cell Rev Reports 16:755–763. https://doi.org/10.1007/s12015-020-09969-6

    Article  CAS  Google Scholar 

  37. Sheikhansari G, Aghebati-Maleki L, Nouri M et al (2018) Current approaches for the treatment of premature ovarian failure with stem cell therapy. Biomed Pharmacother 102:254–262. https://doi.org/10.1016/j.biopha.2018.03.056

    Article  CAS  PubMed  Google Scholar 

  38. Bhusal RP, Foster SR, Stone MJ (2020) Structural basis of chemokine and receptor interactions: key regulators of leukocyte recruitment in inflammatory responses. Protein Sci 29:420–432. https://doi.org/10.1002/pro.3744

    Article  CAS  PubMed  Google Scholar 

  39. Dong F, Harvey J, Finan A et al (2012) Myocardial CXCR4 expression is required for mesenchymal stem cell mediated repair following acute myocardial infarction. Circulation 126:314–324. https://doi.org/10.1161/circulationaha.111.082453

    Article  CAS  PubMed  Google Scholar 

  40. Hu C, Yong X, Li C et al (2013) CXCL12/CXCR4 axis promotes mesenchymal stem cell mobilization to burn wounds and contributes to wound repair. J Surg Res 183:427–434. https://doi.org/10.1016/j.jss.2013.01.019

    Article  CAS  PubMed  Google Scholar 

  41. Cheng Z, Ou L, Zhou X et al (2008) Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther 16:571–579. https://doi.org/10.1038/sj.mt.6300374

    Article  CAS  PubMed  Google Scholar 

  42. Liu X, Duan B, Cheng Z et al (2011) SDF-1/CXCR4 axis modulates bone marrow mesenchymal stem cell apoptosis, migration and cytokine secretion. Protein Cell 2:845–854. https://doi.org/10.1007/s13238-011-1097-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li H, Zhao W, Wang L et al (2019) Human placenta-derived mesenchymal stem cells inhibit apoptosis of granulosa cells induced by IRE1α pathway in autoimmune POF mice. Cell Biol Int 43:899–909. https://doi.org/10.1002/cbin.11165

    Article  CAS  PubMed  Google Scholar 

  44. Fu X, He Y, Wang X et al (2017) Overexpression of miR-21 in stem cells improves ovarian structure and function in rats with chemotherapy-induced ovarian damage by targeting PDCD4 and PTEN to inhibit granulosa cell apoptosis. Stem Cell Res Ther 8:187. https://doi.org/10.1186/s13287-017-0641-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fu X, He Y, Xie C et al (2008) Bone marrow mesenchymal stem cell transplantation improves ovarian function and structure in rats with chemotherapy-induced ovarian damage. Cytotherapy 10:353–363. https://doi.org/10.1080/14653240802035926

    Article  CAS  PubMed  Google Scholar 

  46. Yao X, Guo Y, Wang Q et al (2016) The paracrine effect of transplanted human amniotic epithelial cells on ovarian function improvement in a mouse model of chemotherapy-induced primary ovarian insufficiency. Stem Cells Int 2016:4148923. https://doi.org/10.1155/2016/4148923

    Article  CAS  PubMed  Google Scholar 

  47. Mohamed SA, Shalaby S, Brakta S et al (2019) Umbilical cord blood mesenchymal stem cells as an infertility treatment for chemotherapy induced premature ovarian insufficiency. Biomedicines. https://doi.org/10.3390/biomedicines7010007

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yin N, Wu C, Qiu J et al (2020) Protective properties of heme oxygenase-1 expressed in umbilical cord mesenchymal stem cells help restore the ovarian function of premature ovarian failure mice through activating the JNK/Bcl-2 signal pathway-regulated autophagy and upregulating the circulating of CD8(+)CD28(-) T cells. Stem Cell Res Ther 11:49. https://doi.org/10.1186/s13287-019-1537-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (81771540), Jiangsu Women and Children Healthcare Project (FXK201701), Jiangsu Innovation Team Project (CXTDA2017004).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by LH and DP. The first draft of the manuscript was written by LH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Danhua Pu or Jie Wu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Tan, R., He, Y. et al. Stem cell therapy for premature ovarian insufficiency: a systematic review and meta-analysis of animal and clinical studies. Arch Gynecol Obstet 309, 457–467 (2024). https://doi.org/10.1007/s00404-023-07062-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-023-07062-0

Keywords

Navigation