Skip to main content

Advertisement

Log in

Assessment of high-risk human papillomavirus infections and associated cervical dysplasia in HIV-positive pregnant women in Germany: a prospective cross-sectional two-centre study

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Invasive cervical cancer (ICC) is associated in nearly 100% with persistent high-risk Human Papillomavirus (HR-HPV) infection. ICC is still one of the leading causes for cancer mortality in women worldwide. The immunosuppressive influence of Human Immunodeficiency Virus (HIV) and the immunocompromised period of pregnancy due to tolerance induction against the hemiallogeneic fetus, are generally risk factors for acquisition and persistence of HR-HPV infections and their progression to precancerous lesions and HPV-associated carcinoma.

Methods

Overall, 81 pregnant women living with HIV (WLWH) were included. A medical history questionnaire was used to record clinical and HIV data. Participants received cervicovaginal cytological smear, colposcopy and HPV testing. HPV test was performed using BSGP5+/6+ PCR with Luminex read-out. The HR-HPV genotypes 16, 18, 31, 33, 45, 52, 58 were additionally grouped together as high-high-risk HPV (HHR-HPV) for the purpose of risk-adapted analysis.

Results

HR-HPV prevalence was 45.7%. Multiple HPV infections were detected in 27.2% of participants, of whom all had at least one HR-HPV genotype included. HR-HPV16 and HR-HPV52 were the most prevalent genotypes and found when high squamous intraepithelial lesion (HSIL) was detected by cytology. HIV viral load of ≥ 50 copies/ml was associated with higher prevalence of HR-HPV infections. Whereas, CD4 T cells < 350/µl showed association with occurrence of multiple HPV infections. Time since HIV diagnosis seemed to impact HPV prevalence.

Conclusion

Pregnant WLWH require particularly attentive and extended HPV-, colposcopical- and cytological screening, whereby clinical and HIV-related risk factors should be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189(1):12–19. https://doi.org/10.1002/(SICI)1096-9896(199909)189:1%3c12::AID-PATH431%3e3.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organisation (WHO) (2021) WHO guideline for screening and treatment of cervical pre-cancer lesions for cervical cancer prevention, second edition: use of mRNA tests for human papillomavirus (HPV). WHO Publishing. https://www.who.int/publications/i/item/9789240040434. Accessed 28 June 2022

  3. Chesson HW, Dunne EF, Hariri S, Markowitz LE (2014) The estimated lifetime probability of acquiring human papillomavirus in the United States. Sex Transm Dis 41(11):660–664. https://doi.org/10.1097/OLQ.0000000000000193

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moscicki AB, Schiffman M, Burchell A, Albero G, Giuliano AR, Goodman MT et al (2012) Updating the natural history of human papillomavirus and anogenital cancers. Vaccine 30(Suppl 5):F24-33. https://doi.org/10.1016/j.vaccine.2012.05.089

    Article  PubMed  PubMed Central  Google Scholar 

  5. Winer RL, Hughes JP, Feng Q, Xi LF, Cherne S, O’Reilly S et al (2011) Early natural history of incident, type-specific human papillomavirus infections in newly sexually active young women. Cancer Epidemiol Biomarkers Prev 20(4):699–707. https://doi.org/10.1158/1055-9965.EPI-10-1108

    Article  PubMed  Google Scholar 

  6. Levi JE, Kleter B, Quint WG, Fink MC, Canto CL, Matsubara R et al (2002) High prevalence of human papillomavirus (HPV) infections and high frequency of multiple HPV genotypes in human immunodeficiency virus-infected women in Brazil. J Clin Microbiol 40(9):3341–3345. https://doi.org/10.1128/jcm.40.9.3341-3345.2002

    Article  PubMed  PubMed Central  Google Scholar 

  7. Salcedo MM, Damin AP, Agnes G, Pessini SA, Beitune PE, Alexandre CO et al (2015) Prevalence of human papillomavirus infection in pregnant versus non-pregnant women in Brazil. Arch Gynecol Obstet 292(6):1273–1278. https://doi.org/10.1007/s00404-015-3752-8

    Article  CAS  PubMed  Google Scholar 

  8. Vyankandondera J, Wambua S, Irungu E, Mandaliya K, Temmerman M, Ryan C et al (2019) Type-specific human papillomavirus prevalence, incident cases, persistence, and associated pregnancy outcomes among HIV-infected women in Kenya. Sex Transm Dis 46(8):532–539. https://doi.org/10.1097/OLQ.0000000000001029

    Article  PubMed  Google Scholar 

  9. Deutsche AIDS-Gesellschaft EV (DAIG) (2022) Frauen und HIV—gezielte Forschung ist notwendig. DAIG Publishing. https://daignet.de/site-content/die-daig/sektionen/aawsall-around-women-special#:~:text=Frauen%20und%20HIV%20%E2%80%93%20gezielte%20Forschung%20ist%20notwendig%20%E2%80%94%20Deutsche%20AIDS%20Gesellschaft%20e.V.&text=Ende%202020%20lebten%20in%20Deutschland,21%25. Accessed 28 June 2022

  10. Girardi F, Tirri Frey B, Küppers V, Menton M, Quaas J, Reich O (2012) Neue kolposkopische IFCPC-Nomenklatur der Cervix uteri (Rio de Janeiro 2011). Frauenarzt 53(11):1064–1066

    Google Scholar 

  11. Schmitt M, Dondog B, Waterboer T, Pawlita M (2008) Homogeneous amplification of genital human alpha papillomaviruses by PCR using novel broad-spectrum GP5+ and GP6+ primers. J Clin Microbiol 46(3):1050–1059. https://doi.org/10.1128/JCM.02227-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meijer CJ, Berkhof J, Castle PE, Hesselink AT, Franco EL, Ronco G et al (2009) Guidelines for human papillomavirus DNA test requirements for primary cervical cancer screening in women 30 years and older. Int J Cancer 124(3):516–520. https://doi.org/10.1002/ijc.24010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Arbyn M, Depuydt C, Benoy I, Bogers J, Cuschieri K, Schmitt M et al (2016) VALGENT: A protocol for clinical validation of human papillomavirus assays. J Clin Virol 76(Suppl 1):S14–S21. https://doi.org/10.1016/j.jcv.2015.09.014

    Article  PubMed  Google Scholar 

  14. de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B et al (2010) Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol 11(11):1048–1056. https://doi.org/10.1016/S1470-2045(10)70230-8

    Article  CAS  PubMed  Google Scholar 

  15. Griesser H, Marquardt K, Jordan B, Kühn W, Neis K, Neumann HH, Bollmann R, Pöschel B, Steiner M, Schenck U (2013) Münchner Nomenklatur III. Frauenarzt 54(11):1042–1048

    Google Scholar 

  16. Deutsche-Aids Gesellschaft EV (DAIG)—Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften EV (AWMF) (2020) Deutsch-Österreichische Leitlinie zur HIV-Therapie in der Schwangerschaft und bei HIV exponierten Neugeborenen. AWMF Publishing DAIG. https://www.awmf.org/uploads/tx_szleitlinien/055-002l_S2k_HIV-Therapie-Schwangerschaft-und-HIV-exponierten_Neugeborenen_2020-10_01.pdf. Accessed 28 June 2022

  17. van den Dries L, Claassen MAA, Groothuismink ZMA, van Gorp E, Boonstra A (2017) Immune activation in prolonged cART-suppressed HIV patients is comparable to that of healthy controls. Virology 509:133–139. https://doi.org/10.1016/j.virol.2017.06.014

    Article  CAS  PubMed  Google Scholar 

  18. Wagner A, Skof AS, Sehouli J, Richter R, Henrich W, von Weizsacker K et al (2022) Genotype-specific high-risk human papillomavirus infections and risk factors for cervical dysplasia in women with human immunodeficiency virus in Germany: results from a single-center cross-sectional study. Int J Gynecol Cancer 32(6):716–723. https://doi.org/10.1136/ijgc-2021-003327

    Article  PubMed  Google Scholar 

  19. Robert Koch Institut (RKI) (2020) HIV/AIDS in Deutschland—Eckdaten der Schätzung. RKI Publishing. https://www.rki.de/DE/Content/InfAZ/H/HIVAIDS/Eckdaten/EckdatenDeutschland.pdf?__blob=publicationFile. Accessed 28 June 2022

  20. Palefsky JM (2003) Cervical human papillomavirus infection and cervical intraepithelial neoplasia in women positive for human immunodeficiency virus in the era of highly active antiretroviral therapy. Curr Opin Oncol 15(5):382–388. https://doi.org/10.1097/00001622-200309000-00007

    Article  PubMed  Google Scholar 

  21. Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften EV (AWMF) (2020) S3-Leitlinie Prävention des Zervixkarzinoms. AWMF Publishing. https://www.awmf.org/uploads/tx_szleitlinien/015-027OLl_Praevention_Zervixkarzinom_2020-03-verlaengert.pdf. Accessed 28 June 2022

  22. Bruni L, Diaz M, Castellsague X, Ferrer E, Bosch FX, de Sanjose S (2010) Cervical human papillomavirus prevalence in 5 continents: meta-analysis of 1 million women with normal cytological findings. J Infect Dis 202(12):1789–1799. https://doi.org/10.1086/657321

    Article  PubMed  Google Scholar 

  23. Bollen LJ, Chuachoowong R, Kilmarx PH, Mock PA, Culnane M, Skunodom N et al (2006) Human papillomavirus (HPV) detection among human immunodeficiency virus-infected pregnant Thai women: implications for future HPV immunization. Sex Transm Dis 33(4):259–264. https://doi.org/10.1097/01.olq.0000187208.94655.34

    Article  PubMed  Google Scholar 

  24. Banura C, Franceschi S, van Doorn LJ, Arslan A, Kleter B, Wabwire-Mangen F et al (2008) Prevalence, incidence and clearance of human papillomavirus infection among young primiparous pregnant women in Kampala. Uganda Int J Cancer 123(9):2180–2187. https://doi.org/10.1002/ijc.23762

    Article  CAS  PubMed  Google Scholar 

  25. Meyrelles ARI, Siqueira JD, Hofer CB, Costa TP, Azevedo AP, Guimaraes BV et al (2012) HIV/HPV co-infection during pregnancy in southeastern Brazil: prevalence, HPV types, cytological abnormalities and risk factors. Gynecol Oncol 128(1):107–112. https://doi.org/10.1016/j.ygyno.2012.10.003

    Article  PubMed  Google Scholar 

  26. Luo D, Peng M, Wei X, Pan D, Xue H, Xu Y et al (2021) Prevalence of human papillomavirus and genotype distribution in pregnant and non-pregnant women in China. Risk Manag Healthc Policy 14:3147–3157. https://doi.org/10.2147/RMHP.S288838

    Article  PubMed  PubMed Central  Google Scholar 

  27. Condrat CE, Filip L, Gherghe M, Cretoiu D, Suciu N (2021) Maternal HPV infection: effects on pregnancy outcome. Viruses. https://doi.org/10.3390/v13122455

    Article  PubMed  PubMed Central  Google Scholar 

  28. Michael CW, Esfahani FM (1997) Pregnancy-related changes: a retrospective review of 278 cervical smears. Diagn Cytopathol 17(2):99–107. https://doi.org/10.1002/(sici)1097-0339(199708)17:2%3c99::aid-dc4%3e3.0.co;2-j

    Article  CAS  PubMed  Google Scholar 

  29. Massad LS, Einstein MH, Huh WK, Katki HA, Kinney WK, Schiffman M et al (2013) 2012 updated consensus guidelines for the management of abnormal cervical cancer screening tests and cancer precursors. Obstet Gynecol 121(4):829–846. https://doi.org/10.1097/AOG.0b013e3182883a34

    Article  PubMed  Google Scholar 

  30. Stanley MA, Sterling JC (2014) Host responses to infection with human papillomavirus. Curr Probl Dermatol 45:58–74. https://doi.org/10.1159/000355964

    Article  PubMed  Google Scholar 

  31. Hillemanns P, Soergel P, Hertel H, Jentschke M (2016) Epidemiology and early detection of cervical cancer. Oncol Res Treat 39(9):501–506. https://doi.org/10.1159/000448385

    Article  PubMed  Google Scholar 

  32. Fife KH, Katz BP, Roush J, Handy VD, Brown DR, Hansell R (1996) Cancer-associated human papillomavirus types are selectively increased in the cervix of women in the first trimester of pregnancy. Am J Obstet Gynecol 174(5):1487–1493. https://doi.org/10.1016/s0002-9378(96)70593-8

    Article  CAS  PubMed  Google Scholar 

  33. Morrison EA, Gammon MD, Goldberg GL, Vermund SH, Burk RD (1996) Pregnancy and cervical infection with human papillomaviruses. Int J Gynaecol Obstet 54(2):125–130. https://doi.org/10.1016/0020-7292(96)02694-x

    Article  CAS  PubMed  Google Scholar 

  34. Kim YH, Park JS, Norwitz ER, Park JW, Kim SM, Lee SM et al (2014) Genotypic prevalence of human papillomavirus infection during normal pregnancy: a cross-sectional study. J Obstet Gynaecol Res 40(1):200–207. https://doi.org/10.1111/jog.12155

    Article  PubMed  Google Scholar 

  35. Chan PK, Chang AR, Tam WH, Cheung JL, Cheng AF (2002) Prevalence and genotype distribution of cervical human papillomavirus infection: comparison between pregnant women and non-pregnant controls. J Med Virol 67(4):583–588. https://doi.org/10.1002/jmv.10142

    Article  PubMed  Google Scholar 

  36. Schmeink CE, Melchers WJ, Hendriks JC, Quint WG, Massuger LF, Bekkers RL (2012) Human papillomavirus detection in pregnant women: a prospective matched cohort study. J Womens Health (Larchmt) 21(12):1295–1301. https://doi.org/10.1089/jwh.2012.3502

    Article  PubMed  Google Scholar 

  37. Arany I, Tyring SK (1998) Systemic immunosuppression by HIV infection influences HPV transcription and thus local immune responses in condyloma acuminatum. Int J STD AIDS 9(5):268–271. https://doi.org/10.1258/0956462981922197

    Article  CAS  PubMed  Google Scholar 

  38. Dolei A, Curreli S, Marongiu P, Pierangeli A, Gomes E, Bucci M et al (1999) Human immunodeficiency virus infection in vitro activates naturally integrated human papillomavirus type 18 and induces synthesis of the L1 capsid protein. J Gen Virol 80(Pt 11):2937–2944. https://doi.org/10.1099/0022-1317-80-11-2937

    Article  CAS  PubMed  Google Scholar 

  39. Vernon SD, Hart CE, Reeves WC, Icenogle JP (1993) The HIV-1 tat protein enhances E2-dependent human papillomavirus 16 transcription. Virus Res 27(2):133–145. https://doi.org/10.1016/0168-1702(93)90077-z

    Article  CAS  PubMed  Google Scholar 

  40. Meyrelles AR, Siqueira JD, Santos PP, Hofer CB, Luiz RR, Seuanez HN et al (2016) Bonafide, type-specific human papillomavirus persistence among HIV-positive pregnant women: predictive value for cytological abnormalities, a longitudinal cohort study. Mem Inst Oswaldo Cruz 111(2):120–127. https://doi.org/10.1590/0074-02760150393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Travassos AG, Brites C, Netto EM, Fernandes Sde A, Rutherford GW, Queiroz CM (2012) Prevalence of sexually transmitted infections among HIV-infected women in Brazil. BMC Infect Dis 16(6):581–585. https://doi.org/10.1016/j.bjid.2012.08.016

    Article  Google Scholar 

  42. Jalil EM, Duarte G, El Beitune P, Simoes RT, Dos Santos Melli PP, Quintana SM (2009) High prevalence of human papillomavirus infection among brazilian pregnant women with and without human immunodeficiency virus type 1. Int J Gynecol Obstet 2009:485423. https://doi.org/10.1155/2009/485423

    Article  Google Scholar 

  43. Carriero C, Fascilla FD, Cramarossa P, Lepera A, Bettocchi S, Vimercati A (2018) Colpocytological abnormalities in HIV infected and uninfected pregnant women: prevalence, persistence and progression. Int J Gynecol Obstet 38(4):526–531. https://doi.org/10.1080/01443615.2017.1373082

    Article  Google Scholar 

  44. Ramautarsing RA, Phanuphak N, Chaithongwongwatthana S, Wit FW, Teeratakulpisarn N, Pankam T et al (2015) Cervical and anal HPV infection: cytological and histological abnormalities in HIV-infected women in Thailand. J Virus Erad 1(2):96–102. https://doi.org/10.1016/S2055-6640(20)30485-4

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nasioutziki M, Chatzistamatiou K, Loufopoulos PD, Vavoulidis E, Tsampazis N, Pratilas GC et al (2020) Cervical, anal and oral HPV detection and HPV type concordance among women referred for colposcopy. Infect Agent Cancer 15:22. https://doi.org/10.1186/s13027-020-00287-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baay M, Lardon F, Vermorken JB, Verhoeven V, Avonts D, Van Royen P et al (2004) HPV in cervix and vagina. Sex Transm Infect 80(3):249–250. https://doi.org/10.1136/sti.2003.008383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Skorstengaard M, Thamsborg LH, Lynge E (2017) Burden of HPV-caused cancers in Denmark and the potential effect of HPV-vaccination. Vaccine 35(43):5939–5945. https://doi.org/10.1016/j.vaccine.2017.08.062

    Article  PubMed  Google Scholar 

Download references

Funding

No funding for this research was obtained.

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript was written by CKM. Project development, data analysis, data collection and manuscript editing were performed by CKM, ASS, AMK and IR. JS and WH were responsible for project development and provided contributions to project implementation. J-PS, KW, IA-A and FW contributed by data collection. J-PS performed editing of the manuscript. PG and MH-R performed data analysis. All authors checked and agreed to the final manuscript.

Corresponding author

Correspondence to Irena Rohr.

Ethics declarations

Ethics approval and consent to participate

This study was conducted according to the principles of the Declaration of Helsinki. An ethics approval was necessary and given from ethical committees in Berlin (IRB number EA4/098/19) and Munich (IRB number 20-1040).

Consent to participate

All participants signed a written consent of participance in this study. No participant was excluded.

Consent to participate

Authors confirm that all participants approved by informed consent the publication of their data.

Competing interests

The authors have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metz, C.K., Skof, A.S., Sehouli, J. et al. Assessment of high-risk human papillomavirus infections and associated cervical dysplasia in HIV-positive pregnant women in Germany: a prospective cross-sectional two-centre study. Arch Gynecol Obstet 308, 207–218 (2023). https://doi.org/10.1007/s00404-022-06890-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-022-06890-w

Keywords

Navigation