Skip to main content

Advertisement

Log in

Comprehensive analysis of novel prognosis-related proteomic signature effectively improve risk stratification and precision treatment for patients with cervical cancer

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Objective

Cervical cancer (CC) is one of the most common types of malignant female cancer, and its incidence and mortality are not optimistic. Protein panels can be a powerful prognostic factor for many types of cancer. The purpose of our study was to investigate a proteomic panel to predict the survival of patients with common CC.

Methods and results

The protein expression and clinicopathological data of CC were downloaded from The Cancer Proteome Atlas and The Cancer Genome Atlas database, respectively. We selected the prognosis-related proteins (PRPs) by univariate Cox regression analysis and found that the results of functional enrichment analysis were mainly related to apoptosis. We used Kaplan–Meier analysis and multivariable Cox regression analysis further to screen PRPs to establish a prognostic model, including BCL2, SMAD3, and 4EBP1-pT70. The signature was verified to be independent predictors of OS by Cox regression analysis and the area under curves. Nomogram and subgroup classification were established based on the signature to verify its clinical application. Furthermore, we looked for the co-expressed proteins of three-protein panel as potential prognostic proteins.

Conclusion

A proteomic signature independently predicted OS of CC patients, and the predictive ability was better than the clinicopathological characteristics. This signature can help improve prediction for clinical outcome and provides new targets for CC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

We obtained the data sets from TCPA (https://www.tcpaportal.org/) and TCGA (http://cancergenome.nih.gov/).

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA A Cancer J Clin 72:7–33

    Article  Google Scholar 

  2. Nogueira-Rodrigues A, Ferreira CG, Bergmann A, de Aguiar SS, Thuler LC (2014) Comparison of adenocarcinoma (ACA) and squamous cell carcinoma (SCC) of the uterine cervix in a sub-optimally screened cohort: a population-based epidemiologic study of 51,842 women in Brazil. Gynecol Oncol 135:292–296

    Article  PubMed  Google Scholar 

  3. Bhatla N, Aoki D, Sharma DN, Sankaranarayanan R (2018) Cancer of the cervix uteri. Int J Gynaecol Obstet 143(Suppl 2):22–36

    Article  PubMed  Google Scholar 

  4. Dasari S, Wudayagiri R, Valluru L (2015) Cervical cancer: Biomarkers for diagnosis and treatment. Clin Chim Acta 445:7–11

    Article  CAS  PubMed  Google Scholar 

  5. Shukla HD (2017) Comprehensive analysis of cancer-proteogenome to identify biomarkers for the early diagnosis and prognosis of cancer. Proteomes 5:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hirose S, Murakami N, Takahashi K et al (2020) Genomic alterations in STK11 can predict clinical outcomes in cervical cancer patients. Gynecol Oncol 156:203–210

    Article  CAS  PubMed  Google Scholar 

  7. Hu X, Schwarz JK, Lewis JS Jr et al (2010) A microRNA expression signature for cervical cancer prognosis. Cancer Res 70:1441–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mao X, Qin X, Li L et al (2018) A 15-long non-coding RNA signature to improve prognosis prediction of cervical squamous cell carcinoma. Gynecol Oncol 149:181–187

    Article  CAS  PubMed  Google Scholar 

  9. Cai S, Yu X, Gu Z et al (2020) A 10-gene prognostic methylation signature for stage I-III cervical cancer. Arch Gynecol Obstet 301:1275–1287

    Article  CAS  PubMed  Google Scholar 

  10. Choi CH, Chung JY, Kang JH et al (2020) Chemoradiotherapy response prediction model by proteomic expressional profiling in patients with locally advanced cervical cancer. Gynecol Oncol 157(2):437–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Masuda M, Yamada T (2019) Utility of reverse-phase protein array for refining precision oncology. Adv Exp Med Biol 1188:239–249

    Article  CAS  PubMed  Google Scholar 

  12. Shan Z, Luo D, Liu Q et al (2021) Proteomic profiling reveals a signature for optimizing prognostic prediction in Colon Cancer. J Cancer 12:2199–2205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chu G, Xu T, Zhu G, Liu S, Niu H, Zhang M (2021) Identification of a novel protein-based signature to improve prognosis prediction in renal clear cell carcinoma. Front Mol Biosci 8:623120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen MM, Li J, Wang Y et al (2019) TCPA v3.0: an integrative platform to explore the pan-cancer analysis of functional proteomic data. Mol Cell Proteomics 18:S15-s25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tan GS, Lim KH, Tan HT et al (2014) Novel proteomic biomarker panel for prediction of aggressive metastatic hepatocellular carcinoma relapse in surgically resectable patients. J Proteome Res 13:4833–4846

    Article  CAS  PubMed  Google Scholar 

  16. Liu X, Wu Y, Liu P, Zhang X (2022) Developing a validated nomogram for predicting ovarian metastasis in endometrial cancer patients: a retrospective research. Arch Gynecol Obstet 305:719–729

    Article  PubMed  Google Scholar 

  17. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108

    Article  PubMed  Google Scholar 

  18. Matsuo K, Chang EJ, Matsuzaki S, Shimada M, Ciccone MA, Roman LD (2021) Recent changes in demographics and outcomes of cervical cancer in the United States. Arch Gynecol Obstet 304:1–3

    Article  PubMed  Google Scholar 

  19. Shi X, Li Y, Sun Y et al (2020) Genome-wide analysis of lncRNAs, miRNAs, and mRNAs forming a prognostic scoring system in esophageal squamous cell carcinoma. PeerJ 8:e8368

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hou Z, Yang J, Wang H, Liu D, Zhang H (2019) A potential prognostic gene signature for predicting survival for glioblastoma patients. BioMed Research Int 2019:9506461

    Article  Google Scholar 

  21. Fulda S (2009) Tumor resistance to apoptosis. Int J Cancer 124:511–515

    Article  CAS  PubMed  Google Scholar 

  22. Ngoi NYL, Choong C, Lee J et al (2020) Targeting mitochondrial apoptosis to overcome treatment resistance in cancer. Cancers (Basel) 12:574

    Article  CAS  PubMed  Google Scholar 

  23. Leverson JD, Cojocari D (2018) Hematologic tumor cell resistance to the BCL-2 Inhibitor venetoclax: a product of its microenvironment? Front Oncol 8:458

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kalkavan H, Green DR (2018) MOMP, cell suicide as a BCL-2 family business. Cell Death Differ 25:46–55

    Article  CAS  PubMed  Google Scholar 

  25. Woo SM, Kwon TK (2019) E3 ubiquitin ligases and deubiquitinases as modulators of TRAIL-mediated extrinsic apoptotic signaling pathway. BMB Rep 52:119–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ni T, Li W, Zou F (2005) The ubiquitin ligase ability of IAPs regulates apoptosis. IUBMB Life 57:779–785

    Article  CAS  PubMed  Google Scholar 

  27. Millet C, Zhang YE (2007) Roles of Smad3 in TGF-beta signaling during carcinogenesis. Crit Rev Eukaryot Gene Expr 17:281–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Padua D, Massague J (2009) Roles of TGFbeta in metastasis. Cell Res 19:89–102

    Article  CAS  PubMed  Google Scholar 

  29. Yang S, Sun Y, Jiang D et al (2021) MiR-362 suppresses cervical cancer progression via directly targeting BAP31 and activating TGFβ/Smad pathway. Cancer Med 10:305–316

    Article  CAS  PubMed  Google Scholar 

  30. Chang QQ, Chen CY, Chen Z, Chang S (2019) LncRNA PVT1 promotes proliferation and invasion through enhancing Smad3 expression by sponging miR-140-5p in cervical cancer. Radiol Oncol 53:443–452

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fan Q, Qiu MT, Zhu Z et al (2015) Twist induces epithelial-mesenchymal transition in cervical carcinogenesis by regulating the TGF-beta/Smad3 signaling pathway. Oncol Rep 34:1787–1794

    Article  CAS  PubMed  Google Scholar 

  32. Xia Q, Li C, Bian P, Wang J, Dong S (2014) Targeting SMAD3 for inhibiting prostate cancer metastasis. Tumour Biol 35:8537–8541

    Article  CAS  PubMed  Google Scholar 

  33. Chen N, Balasenthil S, Reuther J et al (2013) DEAR1 is a chromosome 1p35 tumor suppressor and master regulator of TGF-beta-driven epithelial-mesenchymal transition. Cancer Discov 3:1172–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karlsson E, Perez-Tenorio G, Amin R et al (2013) The mTOR effectors 4EBP1 and S6K2 are frequently coexpressed, and associated with a poor prognosis and endocrine resistance in breast cancer: a retrospective study including patients from the randomised Stockholm tamoxifen trials. Breast Cancer Res 15:R96

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhu J, Wang M, Hu D (2020) Development of an autophagy-related gene prognostic signature in lung adenocarcinoma and lung squamous cell carcinoma. PeerJ 8:e8288

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rho SB, Byun HJ, Kim BR, Lee CH (2021) Knockdown of LKB1 sensitizes endometrial cancer cells via AMPK activation. Biomol Ther (Seoul) 29:650–657

    Article  CAS  PubMed  Google Scholar 

  37. Yu G, Chen L, Hu Y, Yuan Z, Luo Y, Xiong Y (2021) Antitumor effects of baicalein and its mechanism via TGFβ pathway in cervical cancer HeLa cells. Evid Based Complement Alternat Med 2021:5527190

    PubMed  PubMed Central  Google Scholar 

  38. Wang S, Pang T, Gao M et al (2013) HPV E6 induces eIF4E transcription to promote the proliferation and migration of cervical cancer. FEBS Lett 587:690–697

    Article  CAS  PubMed  Google Scholar 

  39. Pang T, Wang S, Gao M et al (2015) HPV18 E7 induces the over-transcription of eIF4E gene in cervical cancer. Iran J Basic Med Sci 18:684–690

    PubMed  PubMed Central  Google Scholar 

  40. Zhang YF, Zhang ZH, Li MY et al (2021) Britannin stabilizes T cell activity and inhibits proliferation and angiogenesis by targeting PD-L1 via abrogation of the crosstalk between Myc and HIF-1α in cancer. Phytomedicine 81:153425

    Article  CAS  PubMed  Google Scholar 

  41. Wang L, Guo C, Li X et al (2019) Design, synthesis and biological evaluation of bromophenol-thiazolylhydrazone hybrids inhibiting the interaction of translation initiation factors eIF4E/eIF4G as multifunctional agents for cancer treatment. Eur J Med Chem 177:153–170

    Article  CAS  PubMed  Google Scholar 

  42. Xiao D, Lu Z, Wang Z et al (2020) Synthesis, biological evaluation and anti-proliferative mechanism of fluorine-containing proguanil derivatives. Bioorg Med Chem 28:115258

    Article  CAS  PubMed  Google Scholar 

  43. Linette GP, Hess JL, Sentman CL, Korsmeyer SJ (1995) Peripheral T-cell lymphoma in lckpr-bcl-2 transgenic mice. Blood 86:1255–1260

    Article  CAS  PubMed  Google Scholar 

  44. Xie M, Park D, Sica GL, Deng X (2020) Bcl2-induced DNA replication stress promotes lung carcinogenesis in response to space radiation. Carcinogenesis 41:1565–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang F, Guo L, Cao Y, Li S, Li J, Liu M (2018) MicroRNA-7-5p promotes cisplatin resistance of cervical cancer cells and modulation of cellular energy homeostasis by regulating the expression of the PARP-1 and BCL2 genes. Med Sci Monit 24:6506–6516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Saito T, Takehara M, Tanaka R et al (2004) Correlation between responsiveness of neoadjuvant chemotherapy and apoptosis-associated proteins for cervical adenocarcinoma. Gynecol Oncol 92:284–292

    Article  CAS  PubMed  Google Scholar 

  47. Hu J, Fang Y, Cao Y, Qin R, Chen Q (2014) miR-449a Regulates proliferation and chemosensitivity to cisplatin by targeting cyclin D1 and BCL2 in SGC7901 cells. Dig Dis Sci 59:336–345

    Article  CAS  PubMed  Google Scholar 

  48. Yu L, Zhou GQ, Li DC (2018) MiR-136 triggers apoptosis in human gastric cancer cells by targeting AEG-1 and BCL2. Eur Rev Med Pharmacol Sci 22:7251–7256

    CAS  PubMed  Google Scholar 

  49. Zhu Y, Wen X, Zhao P (2018) MicroRNA-365 inhibits cell growth and promotes apoptosis in melanoma by targeting BCL2 and cyclin D1 (CCND1). Med Sci Monit 24:3679–3692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yumol J, Gabrielli B, Tayyar Y, McMillan NA, Idris A (2020) Smart drug combinations for cervical cancer: dual targeting of Bcl-2 family of proteins and aurora kinases. Am J Cancer Res 10:3406–3414

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lin Y, Li Z, Liu M, Ye H, He J, Chen J (2021) CD34 and Bcl-2 as predictors for the efficacy of neoadjuvant chemotherapy in cervical cancer. Arch Gynecol Obstet 304:495–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the contributions of the TCPA Database and the TCGA Database gratefully.

Funding

This work was supported by the Shandong Province Nature Science Foundation (No. ZR2016HM08).

Author information

Authors and Affiliations

Authors

Contributions

XJ: Conceptualization, Writing-original draft, Writing-review & editing. GC: Writing-original draft, Methodology, Software. YC: Visualization, Investigation and Writing-review & editing. JJ: Software, Validation. TL: Methodology, Visualization. QY: Writing-Review & Editing, Project administration. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qin Yao.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Consent for publication

All authors have seen the manuscript and approved to submit it to your journal. Neither the entire paper nor any part of its content has been published or has been accepted elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, X., Chu, G., Chen, Y. et al. Comprehensive analysis of novel prognosis-related proteomic signature effectively improve risk stratification and precision treatment for patients with cervical cancer. Arch Gynecol Obstet 307, 903–917 (2023). https://doi.org/10.1007/s00404-022-06642-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-022-06642-w

Keywords

Navigation