Skip to main content

Advertisement

Log in

A 10-gene prognostic methylation signature for stage I–III cervical cancer

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Cervical cancer (CC) patients usually have poor prognosis. The present study aims to find a DNA methylation signature for predicting survival of CC patients.

Methods

We selected CC patients at pathological stage I–III with corresponding information on radiotherapy and overall survival (OS) from TCGA. Differential expression and methylation analysis was done between patients with and without radiotherapy. We selected feature genes using recursive feature elimination algorithm to build a support vector machine classifier. DNA methylation biomarkers predictive of prognosis were identified using a LASSO Cox-Proportional Hazards model to construct a prognostic scoring model. The classifier and the prognostic model were tested on the training set and the validation set. Nomogram combining risk score and prognostic clinical factors were used.

Results

We obtained 497 differentially expressed genes (DEGs) and 865 differentially methylated genes (DMGs). Fifteen feature genes were selected from the 292 common genes between the DEGs and the DMGs to construct a classification model for radiotherapy. A DNA methylation signature including 10 genes was identified and used to establish a prognostic scoring model. The 10-gene methylation signature could effectively separate patients into two risk groups with markedly different OS time. Predictive capability of the methylation signature was successfully confirmed on the validation set. A nomogram comprised of risk score, radiotherapy, and recurrence was applied, with calibration plots displaying good concordance between predicted and actual OS. The DEGs were involved in 12 KEGG pathways most of which were correlated with metastasis and proliferation of various cancers, such as pathways in cancer, basal cell carcinoma, transcriptional misregulation in cancer and ECM–receptor interaction.

Conclusion

We Identified a 10-gene methylation signature for risk stratification of CC patients at pathological stages I–III, and ten methylation biomarkers might be novel therapeutic targets for CC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mcguire S (2016) World Cancer Report 2014 Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015 Advances in Nutrition 7(2):418

  2. Sakuragi N (2014) Refining insight into cervical cancer progression. Lancet Oncol 15(4):371–372

    Article  PubMed  Google Scholar 

  3. Baalbergen A, Veenstra Y, Stalpers L (2013) Primary surgery versus primary radiotherapy with or without chemotherapy for early adenocarcinoma of the uterine cervix. Cochrane Database Syst Rev 1(1):0CD06248

    Google Scholar 

  4. Landoni F, Colombo A, Milani R, Placa F, Zanagnolo V, Mangioni C (2017) Randomized study between radical surgery and radiotherapy for the treatment of stage IB–IIA cervical cancer: 20-year update. J Gynecol Oncol 28(3):e34

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kulis M, Esteller M (2010) 2 – DNA methylation and cancer. Adv Genet 70(22):27–56

    Article  PubMed  Google Scholar 

  6. Issa JPJ (2007) DNA methylation as a therapeutic target in cancer. Clin Cancer Res 13(6):1634–1637

    Article  CAS  PubMed  Google Scholar 

  7. Bhat S, Kabekkodu SP, Noronha A, Satyamoorthy K (2016) Biological implications and therapeutic significance of DNA methylation regulated genes in cervical cancer. Biochimie 121:298–311

    Article  CAS  PubMed  Google Scholar 

  8. Lorincz AT (2016) Virtues and weaknesses of DNA methylation as a test for cervical cancer prevention. Acta Cytol 60(6):501–512

    Article  CAS  PubMed  Google Scholar 

  9. Clarke MA, Luhn P, Gage JC, Bodelon C, Dunn ST, Walker J, Zuna R, Hewitt S, Killian JK, Yan L (2017) Discovery and validation of candidate host DNA methylation markers for detection of cervical precancer and cancer. Int J Cancer 141(4):701–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang J, Yao T, Lin Z, Gao Y (2017) Aberrant methylation of MEG3 functions as a potential plasma-based biomarker for cervical cancer. Sci Rep 7(1):6271. https://doi.org/10.1038/s41598-017-06502-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Joanna Z, Allison J, Shih-Han L, Esther N, Heidi F, Michal Z, David C, Alexandra S, Salvesen HB, Jacobs IJ (2012) The dynamics and prognostic potential of DNA methylation changes at stem cell gene loci in women's cancer. PLoS Genet 8(3):e1002517

    Google Scholar 

  12. Yin Z, Sun Y, Ge S, Sun J (2017) Epigenetic activation of WHSC1 functions as an oncogene and is associated with poor prognosis in cervical cancer. Oncol Rep 37(4):2286–2294

    Article  CAS  PubMed  Google Scholar 

  13. Wang Z, Zhang C, Sun L, Liang J, Liu X, Li G, Yao K, Zhang W, Jiang T (2016) FGFR3, as a receptor tyrosine kinase, is associated with differentiated biological functions and improved survival of glioma patients. Oncotarget 51(51):84587

    Google Scholar 

  14. Eberly LE (2003) Correlation and simple linear regression. Radiology 227(3):617–622

    Article  Google Scholar 

  15. Deist TM, Dankers F, Valdes G, Wijsman R, Hsu IC, Oberije C, Lustberg T, van Soest J, Hoebers F, Jochems A, El Naqa I, Wee L, Morin O, Raleigh DR, Bots W, Kaanders JH, Belderbos J, Kwint M, Solberg T, Monshouwer R, Bussink J, Dekker A, Lambin P (2018) Machine learning algorithms for outcome prediction in (chemo)radiotherapy: an empirical comparison of classifiers. Med Phys 45(7):3449–3459. https://doi.org/10.1002/mp.12967

    Article  PubMed  Google Scholar 

  16. Scholkopf B, Smola AJ (2002) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge

    Google Scholar 

  17. Gerds TA, Kattan MW, Schumacher M, Yu C (2013) Estimating a time-dependent concordance index for survival prediction models with covariate dependent censoring. Stat Med 32(13):2173–2184. https://doi.org/10.1002/sim.5681

    Article  PubMed  Google Scholar 

  18. Rufibach K (2010) Use of Brier score to assess binary predictions. J Clin Epidemiol 63(8):1250–1260

    Article  Google Scholar 

  19. Robin X (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform 12(1):1–8

    Article  Google Scholar 

  20. Anderson WI, Schlafer DH, Vesely KR (1989) Thyroid follicular carcinoma with pulmonary metastases in a beaver (Castor canadensis). J Wildl Dis 25(4):599–600. https://doi.org/10.7589/0090-3558-25.4.599

    Article  CAS  PubMed  Google Scholar 

  21. Chang Y, An H, Xu L, Zhu Y, Yang Y, Lin Z, Xu J (2015) Systemic inflammation score predicts postoperative prognosis of patients with clear-cell renal cell carcinoma. Br J Cancer 113(4):626–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    Article  CAS  PubMed  Google Scholar 

  23. Hao X, Luo H, Krawczyk M, Wei W, Wang W, Wang J, Flagg K, Hou J, Zhang H, Yi S (2017) DNA methylation markers for diagnosis and prognosis of common cancers. Proc Natl Acad Sci USA 114(28):7414–7419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sharareh SR, Kouros O, Chen J, Scarbrough PM, Craciunescu OI, Horton JK, Dressman HK, Blackwell KL, Dewhirst MW (2015) Genomic profiling in locally advanced and inflammatory breast cancer and its link to DCE-MRI and overall survival. Int J Hyperth 31(4):1–10

    Google Scholar 

  25. Ding Y, Yang DZ, Zhai YN, Xue K, Xu F, Gu XY, Wang SM (2017) Microarray expression profiling of long non-coding RNAs in epithelial ovarian cancer. Oncol Lett 14(2):2523–2530

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jiang X, Tan J, Li J, Kivimae S, Yang X, Zhuang L, Lee PL, Chan MT, Stanton LW, Liu ET, Cheyette BN, Yu Q (2008) DACT3 is an epigenetic regulator of Wnt/beta-catenin signaling in colorectal cancer and is a therapeutic target of histone modifications. Cancer Cell 13(6):529–541. https://doi.org/10.1016/j.ccr.2008.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao H, Yang L, Han Y, Li H, Ling Z, Wang Y, Wang E, Wu G (2017) Dact3 inhibits the malignant phenotype of non-small cell lung cancer through downregulation of c-Myb. Int J Clin Exp Pathol 10(12):11580–11587

    PubMed  PubMed Central  Google Scholar 

  28. Al GH, Salgado-Bernabe M, Ck VV, Salcedo-Vargas M, Andrade-Manzano A, Avila-Moreno F, Pina-Sanchez P (2015) Increased expression of HOXB2 and HOXB13 proteins is associated with HPV infection and cervical cancer progression. Asian Pac J Cancer Prev Apjcp 16(4):1349–1353

    Article  Google Scholar 

  29. Yuan H, Kajiyama H, Ito S, Chen D, Shibata K, Hamaguchi M, Kikkawa F, Senga T (2015) HOXB13 and ALX4 induce SLUG expression for the promotion of EMT and cell invasion in ovarian cancer cells. Oncotarget 6(15):13359–13370

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kim H, Hwang JS, Lee B, Hong J, Lee S (2014) Newly identified cancer-associated role of human neuronal growth regulator 1 (NEGR1). J Cancer 5(7):598–608. https://doi.org/10.7150/jca.8052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim H, Chun Y, Che L, Kim J, Lee S, Lee S (2017) The new obesity-associated protein, neuronal growth regulator 1 (NEGR1), is implicated in Niemann-Pick disease Type C (NPC2)-mediated cholesterol trafficking. Biochem Biophys Res Commun 482(4):1367–1374

    Article  CAS  PubMed  Google Scholar 

  32. Bedi D, Vig K, Waduwawara S, Samant RS, Yates C (2017) Gene signature for predicting worse relapse-free survival with basal-like breast cancer. Res Rep 1:e1–e112

    Google Scholar 

  33. Agthoven TV, Veldscholte J, Smid M, Agthoven TLAV, Vreede L, Broertjes M, Vries ID, Jong DD, Sarwari R, Dorssers LCJ (2009) Functional identification of genes causing estrogen independence of human breast cancer cells. Breast Cancer Res Treat 114(1):23–30

    Article  CAS  PubMed  Google Scholar 

  34. van Agthoven T, Sieuwerts AM, Meijer-van Gelder ME, Look MP, Smid M, Veldscholte J, Sleijfer S, Foekens JA, Dorssers LC (2009) Relevance of breast cancer antiestrogen resistance genes in human breast cancer progression and tamoxifen resistance. J Clin Oncol 27(4):542–549. https://doi.org/10.1200/jco.2008.17.1462

    Article  PubMed  Google Scholar 

  35. Zofia HR, GaLle P, Frédéric C, Céline F, Pauline L, Philippe T, Jean-Michel C, Alain A (2010) YAP1 and VGLL3, encoding two cofactors of TEAD transcription factors, are amplified and overexpressed in a subset of soft tissue sarcomas. Genes Chromosomes Cancer 49(12):1161–1171

    Article  Google Scholar 

  36. Karen G, Quinn MCJ, Wojnarowicz PM, Arcand SL, Manon DL, Véronique B, Jean-Sébastien R, Killary AM, Davis EC, Josée L (2013) VGLL3 expression is associated with a tumor suppressor phenotype in epithelial ovarian cancer. Mol Oncol 7(3):513–530

    Article  Google Scholar 

  37. Ruth E, Walter P, Martina D, Lisa S, Laura W, Martin S, Brigitte W, Markus S, Fabian SD, Judith S (2015) Potential of DNA methylation in rectal cancer as diagnostic and prognostic biomarkers. Br J Cancer 113(7):1035–1045

    Article  Google Scholar 

  38. Atsushi K, Yasuo I, Yoshihiro K, Masakazu S, Koji K, Naoki Y, Naoto T, Jumpei H, Hiroshi A, Tsutomu K (2012) Gene expression signature-based prognostic risk score in patients with primary central nervous system lymphoma. Clin Cancer Res 18(20):5672–5681

    Article  Google Scholar 

Download references

Funding

This study was supported by Natural Science Foundation of Shanghai Sicence and Technology Committee, China (No.13ZR1408600), National Natural Science Foundation Youth Project (No. 81702543), Science Foundation of Naval Military Medical University (No. 2017JS05) and Science Foundation of Changhai Hospital (No. 2018JS004).

Author information

Authors and Affiliations

Authors

Contributions

SYC, XMY and ZYG participated in the design of this study, and they both performed the statistical analysis. QQY and BWW carried out the study and collected important background information. JZS and RG drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rui Guan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, S., Yu, X., Gu, Z. et al. A 10-gene prognostic methylation signature for stage I–III cervical cancer. Arch Gynecol Obstet 301, 1275–1287 (2020). https://doi.org/10.1007/s00404-020-05524-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-020-05524-3

Keywords

Navigation