Skip to main content
Log in

Metabolomic analysis of endometrial cancer by high-resolution magic angle spinning NMR spectroscopy

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

To analyze endometrial metabolite profiles between patients with endometrial cancer and controls.

Methods

Seventeen (17) women with endometrium cancer and 18 controls were enrolled in this study. 1H HR-MAS (High Resolution-Magic Angle Spinning) NMR (Nuclear Magnetic Resonance) spectroscopy data obtained from endometrial tissue samples of patients with endometrial cancer and control group were analyzed with bioinformatics methods.

Results

Principal component analysis (PCA) and the partial least squares discriminant analysis (PLS-DA) score plots obtained with the multivariate statistical analysis of pre-processed spectral data shows a separation between the samples from patients with endometrial cancer and controls. Analysis results suggest that the levels of lactate, glucose, o-phosphoethanolamine, choline, glycerophosphocholine, phosphocholine, leucine, isoleucine, valine, glutamate, glutamine, n-acetyltyrosine, methionine, taurine, alanine, aspartate and phenylalanine are increased in patients with endometrial cancer compared to the controls.

Conclusion

The metabolomics signature of patients with endometrial cancer is different from that of benign endometrial tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, Znaor A, Bray F (2019) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144:1941–1953

    Article  CAS  PubMed  Google Scholar 

  2. Sheikh MA, Althouse AD, Freese KE, Soisson S, Edwards RP, Welburn S, Sukumvanich P, Comerci J, Kelley J, LaPorte RE, Linkov F (2014) USA endometrial cancer projections to 2030: should we be concerned? Future Oncol Lond Engl 10:2561–2568

    Article  CAS  Google Scholar 

  3. Shaw E, Farris M, McNeil J, Friedenreich C (2016) Obesity and endometrial cancer. Obesity. Cancer 208:107–136

    CAS  Google Scholar 

  4. Schmandt RE, Iglesias DA, Co NN, Lu KH (2011) Understanding obesity and endometrial cancer risk: opportunities for prevention. Am J Obstet Gynecol 205(6):518–525

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nees LK, Heublein S, Steinmacher S, Juhasz-Böss I, Brucker S, Tempfer CB, Wallwiener M (2022) Endometrial hyperplasia as a risk factor of endometrial cancer. Arch Gynecol Obstet. Jan 10. Epub ahead of print

  6. Amant F, Moerman P, Neven P, Timmerman D, Van Limbergen E, Vergote I (2005) Endometrial cancer. Lancet 366:491–505

    Article  PubMed  Google Scholar 

  7. Gottwald L, Pluta P, Piekarski J, Spych M, Hendzel K, Topczewska-Tylinska K, Nejc D, Bibik R, Korczyński J, Ciałkowska-Rysz A (2010) Long-term survival of endometrioid endometrial cancer patients. Arch Med Sci AMS 6:937–944

    Article  PubMed  Google Scholar 

  8. Pappa KI, Anagnou NP (2005) Emerging issues of the expression profling technologies for the study of gynecologic cancer. Am J Obstet Gynecol 193:908–918

    Article  PubMed  Google Scholar 

  9. Rinschen MM, Ivanisevic J, Giera M, Siuzdak G (2019) Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol 20:353–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang A, Sun H, Wang P, Han Y, Wang X (2012) Modern analytical techniques in metabolomics analysis. Analyst 137:293–300

    Article  CAS  PubMed  Google Scholar 

  11. Beger RD (2013) A review of applications of metabolomics in cancer. Metabolites 3:552–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang Y, Zhu Y, Li X, Zhang X, Yu B (2021) Identification of potential biomarkers and metabolic pathways based on integration of metabolomic and transcriptomic data in the development of breast cancer. Arch Gynecol Obstet 303:1599–1606

    Article  CAS  PubMed  Google Scholar 

  13. Sciacovelli M, Frezza C (2016) Oncometabolites: unconventional triggers of oncogenic signalling cascades. Free Radical Biol Med 100:175–181

    Article  CAS  Google Scholar 

  14. Yang M, Soga T, Pollard PJ (2013) Oncometabolites: linking altered metabolism with cancer. J Clin Investig 123:3652–3658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wishart DS (2016) Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov 15:473–484

    Article  CAS  PubMed  Google Scholar 

  16. Wang W, Lv J, Chen N, Lou B, Mao W, Wang P, Chen Y (2018) Dysregulated serum metabolites in staging of hepatocellular carcinoma. Clin Biochem 61:7–11

    Article  CAS  PubMed  Google Scholar 

  17. Turkoglu O, Zeb A, Graham S, Szyperski T, Szender JB, Odunsi K, Bahado-Singh R (2016) Metabolomics of biomarker discovery in ovarian cancer: a systematic review of the current literature. Metabolomics 12:60. https://doi.org/10.1007/s11306-016-0990-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gowda GA, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D (2008) Metabolomics based methods for early disease diagnostics. Expert Rev Mol Diagn 8:617–633. https://doi.org/10.1586/14737159.8.5.617

    Article  CAS  PubMed  Google Scholar 

  19. Kolokolova TN, Savel’ev OY, Sergeev NM (2008) Metabolic analysis of human biological fluids by 1H-NMR spectroscopy. J Analyt Chem 63:104–120

    Article  CAS  Google Scholar 

  20. Sitter B, Bathen TF, Singstad TE, Fjøsne HE, Lundgren S, Halgunset J, Gribbestad IS (2010) Quantification of metabolites in breast cancer patients with different clinical prognosis using HR MAS MR spectroscopy. NMR Biomed Int J Devoted Dev Appl Magnet Resonance In vivo 23:424–431. https://doi.org/10.1002/nbm.1478

    Article  CAS  Google Scholar 

  21. Swanson MG, Zektzer AS, Tabatabai ZL, Simko J, Jarso S, Keshari KR, Schmitt L, Carroll PR, Shinohara K, Vigneron DB, Kurhanewicz J (2006) Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magnet Resonance Med 55(6):1257–1264

    Article  CAS  Google Scholar 

  22. Moestue S, Sitter B, Frost Bathen T, Tessem M-B, Susann GI (2011) HR MAS MR spectroscopy in metabolic characterization of cancer. Curr Top Med Chem 11(1):2–26

    Article  CAS  PubMed  Google Scholar 

  23. Gogiashvili M, Nowacki J, Hergenröder R, Hengstler JG, Lambert J, Edlund K (2019) HR-MAS NMR based quantitative metabolomics in breast cancer. Metabolites 9(2):19

    Article  CAS  PubMed Central  Google Scholar 

  24. Renault M, Shintu L, Piotto M, Caldarelli S (2013) Slow-spinning low-sideband HR-MAS NMR spectroscopy: delicate analysis of biological samples. Sci Rep 3(1):1–5

    Article  Google Scholar 

  25. Cheng LL, Ma MJ, Becerra L, Ptak T, Tracey I, Lackner A, Gonzalez RG (1997) Quantitative neuropathology by high resolution magic angle spinning proton magnetic resonance spectroscopy. Proc Natl Acad Sci USA 94:6408–6413. https://doi.org/10.1073/pnas.94.12.6408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Skorupa A, Poński M, Ciszek M, Cichoń B, Klimek M, Witek A, Pakuło S, Boguszewicz Ł, Sokół M. (2021) Grading of endometrial cancer using 1H HR-MAS NMR-based metabolomics. Sci Rep 11(1):1–17

    Article  Google Scholar 

  27. Ruhland E, Bund C, Outilaft H, Piotto M, Namer IJ (2019) A metabolic database for biomedical studies of biopsy specimens by high-resolution magic angle spinning nuclear MR: a qualitative and quantitative tool. Magn Reson Med 82(1):62–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, Gauthier C, Jacques PÉ, Li S, Xia J (2021) MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res 49(W1):W388–W396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Glunde K, Bhujwalla ZM, Ronen SM (2011) Choline metabolism in malignant transformation. Nat Rev Cancer 11(12):835–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL (2017) The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim Biophys Acta Biomembr 1859:1558–1572

    Article  PubMed  Google Scholar 

  31. Kennedy EP, Weiss SB (1956) The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem 222:193–214

    Article  CAS  PubMed  Google Scholar 

  32. Trousil S, Lee P, Pinato DJ, Ellis JK, Dina R, Aboagye EO, Keun HC, Sharma R (2014) Alterations of choline phospholipid metabolism in endometrial cancer are caused by choline kinase alpha overexpression and a hyperactivated deacylation pathway. Cancer Res 74:6867–6877. https://doi.org/10.1158/0008-5472.CAN-13-2409

    Article  CAS  PubMed  Google Scholar 

  33. Albrecht W (2019) Highlight report: role of choline phospholipid metabolism in tumor progression. EXCLI J 18:1097–1098. https://doi.org/10.17179/excli2019-2071

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cheng M, Bhujwalla Z, Glunde K (2016) Targeting phospholipid metabolism in cancer. Front Oncol 6:266. https://doi.org/10.3389/fonc.2016.00266

    Article  PubMed  PubMed Central  Google Scholar 

  35. Osawa T, Shimamura T, Saito K, Hasegawa Y, Ishii N, Nishida M et al (2019) Phosphoethanolamine accumulation protects cancer cells under glutamine starvation through downregulation of PCYT2. Cell Rep 29:89-103.e7. https://doi.org/10.1016/j.celrep.2019.08.087

    Article  CAS  PubMed  Google Scholar 

  36. Shah T, Krishnamachary B, Wildes F, Wijnen JP, Glunde K, Bhujwalla ZM (2018) Molecular causes of elevated phosphoethanolamine in breast and pancreatic cancer cells. NMR Biomed 31:e3936. https://doi.org/10.1002/nbm.3936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lieu EL, Nguyen T, Rhyne S, Kim J (2020) Amino acids in cancer. Exp Mol Med 52:15–30. https://doi.org/10.1038/s12276-020-0375-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ananieva E (2015) Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World J Biol Chem 6:281–289. https://doi.org/10.4331/wjbc.v6.i4.281

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ananieva EA, Wilkinson AC (2018) Branched-chain amino acid metabolism in cancer. Curr Opin Clin Nutr Metab Care 21(1):64–70

    Article  CAS  PubMed  Google Scholar 

  40. Ihata Y, Miyagi E, Numazaki R, Muramatsu T, Imaizumi A, Yamamoto H, Yamakado M, Okamoto N, Hirahara F (2013) Amino acid profile index for early detection of endometrial cancer: verification as a novel diagnostic marker. Int J Clin Oncol 19:364–372. https://doi.org/10.1007/s10147-013-0565-2

    Article  CAS  PubMed  Google Scholar 

  41. Nie C, He T, Zhang W, Zhang G, Ma X (2018) Branched chain amino acids: beyond nutrition metabolism. Int J Mol Sci 19(4):954

    Article  PubMed Central  Google Scholar 

  42. Cluntun AA, Lukey MJ, Cerione RA, Locasale JW (2017) Glutamine metabolism in cancer: understanding the heterogeneity. Trends Cancer 3(3):169–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Marshall A, van Geldermalsen M, Otte NJ, Lum T, Vellozzi M, Thoeng A, Pang A, Nagarajah R, Zhang B, Wang Q, Anderson L, Rasko JEJ, Holst J (2017) ASCT2 regulates glutamine uptake and cell growth in endometrial carcinoma. Oncogenesis 6:e367. https://doi.org/10.1038/oncsis.2017.70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Asaka S, Yen TT, Shen YA, Hong J, Asaka R, Shih IM, Wang TL, Gaillard S (2020) Glutaminase expression is correlated with adverse clinicopathological features and patient outcome in endometrial cancer. Gynecol Oncol 159:229

    Article  Google Scholar 

  45. Choi YK, Park KG (2018) Targeting glutamine metabolism for cancer treatment. Biomol Ther Seoul 26(1):19–28

    Article  CAS  PubMed  Google Scholar 

  46. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891899

    Article  Google Scholar 

  47. Liberti MV, Locasale JW (2016) The warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41:211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mendler AN, Hu B, Prinz PU, Kreutz M, Gottfried E, Noessner E (2012) Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-Jun activation. Int J Cancer 131:633–640

    Article  CAS  PubMed  Google Scholar 

  49. Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, Renner K, Timischl B, Mackensen A, Kunz-Schughart L, Andreesen R, Krause SW, Kreutz M (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109:38123819

    Article  Google Scholar 

  50. Kes MM, Van den Bossche J, Griffioen AW, Huijbers EJ (2020) Oncometabolites lactate and succinate drive pro-angiogenic macrophage response in tumors. Biochim Biophys Acta Rev Cancer 1874:188427

    Article  CAS  PubMed  Google Scholar 

  51. Raffone A, Troisi J, Boccia D, Travaglino A, Capuano G, Insabato L, Mollo A, Guida M, Zullo F (2020) Metabolomics in endometrial cancer diagnosis: a systematic review. Acta Obstet Gynecol Scand 99(9):1135–1146

    Article  PubMed  Google Scholar 

  52. Bahado-Singh RO, Lugade A, Field J, Al-Wahab Z, Han B, Mandal R, Bjorndahl TC, Turkoglu O, Graham SF, Wishart D, Odunsi K. (2018) Metabolomic prediction of endometrial cancer. Metabolomics 14:6

    Article  Google Scholar 

  53. Knific T, Vouk K, Smrkolj Š, Prehn C, Adamski J, Rižner TL (2018) Models including plasma levels of sphingomyelins and phosphatidylcholines as diagnostic and prognostic biomarkers of endometrial cancer. J Steroid Biochem Mol Biol 178:312–321

    Article  CAS  PubMed  Google Scholar 

  54. Shi K, Wang Q, Su Y, Xuan X, Liu Y, Chen W, Qian Y, Lash GE. (2018) Identification and functional analyses of differentially expressed metabolites in early stage endometrial carcinoma. Cancer Sci 109:1032–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Valle-Mendiola A, Soto-Cruz I (2020) Energy metabolism in cancer: the roles of STAT3 and STAT5 in the regulation of metabolism-related genes. Cancers (Basel) 12(1):124

    Article  CAS  Google Scholar 

  56. André M, Dumez JN, Rezig L, Shintu L, Piotto M, Caldarelli S (2014) Complete protocol for slow-spinning high-resolution magic-angle spinning NMR analysis of fragile tissues. Anal Chem 86(21):10749–10754

    Article  PubMed  Google Scholar 

  57. Travaglino A, Raffone A, Saccone G, D’Alessandro P, Arduino B, de Placido G, Mascolo M, Insabato L, Zullo F (2019) Significant risk of occult cancer in complex non-atypical endometrial hyperplasia. Arch Gynecol Obstet 300:1147–1154. https://doi.org/10.1007/s00404-019-05299-2

    Article  PubMed  Google Scholar 

  58. Travaglino A, Raffone A, Saccone G, Insabato L, Mollo A, De Placido G, Zullo F (2019) Immunohistochemical predictive markers of response to conservative treatment of endometrial hyperplasia and early endometrial cancer: a systematic review. Acta Obstet Gynecol Scand 98:1086–1099. https://doi.org/10.1111/aogs.13587

    Article  CAS  PubMed  Google Scholar 

  59. Bohîlțea RE, Ancăr V, Cirstoiu MM, Rădoi V, Bohîlțea LC, Furtunescu F (2015) Project for the National program of early diagnosis of endometrial cancer part I. J Med Life 8:305–314

    PubMed  PubMed Central  Google Scholar 

  60. Hwang VJ, Weiss RH (2016) Metabolomic profiling for early cancer detection: current status and future prospects. Expert Opin Drug Metab Toxicol 12:1263–1265. https://doi.org/10.1080/17425255.2016.1238460

    Article  PubMed  Google Scholar 

  61. Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. TrAC Trends Anal Chem 24:285–294. https://doi.org/10.1016/j.trac.2004.11.021

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by Scientific Research Projects Unit of Inonu University [under Grant number TCD-2021-2359]. B.D. is supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) under project number 120C152.

Author information

Authors and Affiliations

Authors

Contributions

SAD: protocol/project development, data collection, data analysis, and manuscript writing/editing. AM, BD: protocol/project development, data analysis, and manuscript writing/editing. EY, EİÇ : data collection. ES: data collection, manuscript writing/editing. GT: protocol/project development, manuscript writing/editing. AK: protocol/project development, data collection, data analysis, and manuscript writing/editing. All authors given final approval of the version to be published.

Corresponding author

Correspondence to Abdullah Karaer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

Institutional review boards approved the study (Approval no: 19–119). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki. Declaration and informed consent forms had been obtained from all study participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arda Düz, S., Mumcu, A., Doğan, B. et al. Metabolomic analysis of endometrial cancer by high-resolution magic angle spinning NMR spectroscopy. Arch Gynecol Obstet 306, 2155–2166 (2022). https://doi.org/10.1007/s00404-022-06587-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-022-06587-0

Keywords

Navigation