Skip to main content
Log in

Prenatal diagnosis of acrania/exencephaly/anencephaly sequence (AEAS): additional structural and genetic anomalies

  • Maternal-Fetal Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Objectives

To analyse additional structural and genetic anomalies in fetuses with acrania/exencephaly/anencephaly sequence (AEAS).

Methods

A retrospective analysis of 139 fetuses with AEAS diagnosed between 2006 and 2020 in a single tertiary referral ultrasound department.

Results

The median gestational age at diagnosis decreased from 15 weeks in 2006 to 13 weeks in 2020 (− 0.21 per each year; p = 0.009). In 103 fetuses, the defects were limited to the neural tube (NTD) (74.1%), in 36 fetuses (25.9%), there were additional structural non-NTD anomalies. The most common were ventral body wall defects present in 17.8% (23/139), followed by anomalies of the limbs (7.2%; 10/139), face (6.5%; 9/139) and heart (6.5%; 9/139). Genetic anomalies were diagnosed in 7 of the 74 conclusive results (9.5%; 7/74; trisomy 18, n = 5; triploidy, n = 1; duplication of Xq, n = 1). In univariate logistic regression models, male sex, limb anomalies and ventral body wall defects significantly increased the risk of genetic anomalies (OR 12.3; p = 0.024; OR 16.5; p = 0.002 and OR 10.4; p = 0.009, respectively).

Conclusions

A significant number of fetuses with AEAS have additional structural non-NTD anomalies, which are mostly consistent with limb body wall complex. Genetic abnormalities are diagnosed in almost 10% of affected fetuses and trisomy 18 is the most common aberration. Factors that significantly increased the odds of genetic anomalies in fetuses with AEAS comprise male sex, limb anomalies and ventral body wall defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability statement

Data available on request from the authors.

References

  1. Fleurke-Rozema JH, van Leijden L, van de Kamp K, Pajkrt E, Bilardo CM, Snijders RJ (2015) Timing of detection of anencephaly in The Netherlands. Prenat Diagn 35:483–485

    Article  CAS  Google Scholar 

  2. Timor-Tritsch IE, Greenebaum E, Monteagudo A, Baxi L (1996) Exencephaly-anencephaly sequence: proof by ultrasound imaging and amniotic fluid cytology. J Maternal Fetal Med 5:182–185

    CAS  Google Scholar 

  3. Matsumoto A, Hatta T, Moriyama K, Otani H (2002) Sequential observations of exencephaly and subsequent morphological changes by mouse exo utero development system: analysis of the mechanism of transformation from exencephaly to anencephaly. Anat Embryol 205:7–18

    Article  Google Scholar 

  4. Ganchrow D, Ornoy A (1979) Possible evidence for secondary degeneration of central nervous system in the pathogenesis of anencephaly and brain dysgraphia: a study in young human fetuses. Virchows Arch A Pathol Anat Histol 384:285–294

    Article  CAS  Google Scholar 

  5. Campbell S, Johnstone FD, Holt EM, May P (1972) Anencephaly: early ultrasonic diagnosis and active management. Lancet 2(7789):1226–1227

    Article  CAS  Google Scholar 

  6. Cameron M, Moran P (2009) Prenatal screening and diagnosis of neural tube defects. Prenat Diagn 29:402

    Article  Google Scholar 

  7. Szkodziak P, Krzyżanowski J, Krzyżanowski A, Szkodziak F, Woźniak S, Czuczwar P, Kwaśniewska A, Paszkowski T (2020) The role of the “beret” sign and other markers in ultrasound diagnostic of the acrania-exencephaly-anencephaly sequence stages. Arch Gynecol Obstet 302(3):619–628. https://doi.org/10.1007/s00404-020-05650-y

    Article  Google Scholar 

  8. Wertaschnigg D, Reddy M, Ramkrishna J, da Silva CF, Sepulveda W, Rolnik DL, Meagher S (2020) Ultrasound appearances of the acrania-anencephaly sequence at 10–14 weeks’ gestation. J Ultrasound Med 39(9):1695–1700

    Article  Google Scholar 

  9. Santana EFM, Araujo Junior E, Tonni G, Costa FDS, Meagher S (2018) Acrania-exencephaly-anencephaly sequence phenotypic characterization using two- and three-dimensional ultrasound between 11 and 13 weeks and 6 days of gestation. J Ultrason 18:240–246

    Article  Google Scholar 

  10. Salomon LJ, Alfirevic Z, Berghella V, Bilardo C, Hernandez-Andrade E, Johnsen SL et al (2011) Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol 37(1):116–126

    Article  CAS  Google Scholar 

  11. Bijok J, Kucińska-Chahwan A, Massalska D, Ilnicka A, Panek G, Roszkowski T (2020) In-house genetic counseling increases the detection of abnormal karyotypes-a 26-year experience in prenatal diagnosis in a single tertiary referral hospital in Poland. J Assist Reprod Genet 37(8):1999–2006

    Article  Google Scholar 

  12. Köhler S, Schulz MH, Krawitz P, Bauer S, Dölken S, Ott CE et al (2009) Clinical diagnostics in human genetics with semantic similarity searches in ontologies. Am J Hum Genet 85(4):457–464

    Article  Google Scholar 

  13. Köhler S, Vasilevsky NA, Engelstad M, Foster E, McMurry J, Aymé S et al (2017) The human phenotype ontology in 2017. Nucleic Acids Res 45(D1):D865–D876

    Article  Google Scholar 

  14. Johnson SP, Sebire NJ, Snijders RJ, Tunkel S, Nicolaides KH (1997) Ultrasound screening for anencephaly at 10–14 weeks of gestation. Ultrasound Obstet Gynecol 9:14–16

    Article  CAS  Google Scholar 

  15. Syngelaki A, Chelemen T, Dagklis T, Allan L, Nicolaides KH (2011) Challenges in the diagnosis of fetal non-chromosomal abnormalities at 11–13 weeks. Prenat Diagn 31:90–102

    Article  Google Scholar 

  16. Petousis S, Sotiriadis A, Margioula-Siarkou C, Tsakiridis I, Christidis P, Kyriakakis M, Mamopoulos A, Athanasiadis A, Dagklis T (2020) Detection of structural abnormalities in fetuses with normal karyotype at 11–13 weeks using the anatomic examination protocol of the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG). J Matern Fetal Neonatal Med 33(15):2581–2587

    Article  Google Scholar 

  17. Struksnæs C, Blaas HK, Vogt C (2019) Autopsy findings of central nervous system anomalies in intact fetuses following termination of pregnancy after prenatal ultrasound diagnosis. Pediatr Dev Pathol 22(6):546–557

    Article  Google Scholar 

  18. Stoll C, Dott B, Alembik Y, Roth M-P (2011) Associated malformations among infants with neural tube defects. Am J Med Genet Part A 155:565–568

    Article  Google Scholar 

  19. Entezami M, Albig M (2004) Gasiorek. Spina bifida aperta, (myelo-) meningocele. In: Wiens A, Becker R (eds) Ultrasound diagnosis of fetal anomalies. Georg Thieme Verlag, Stuttgart, pp 51–56

    Google Scholar 

  20. Hrgovic Z, Panitz HG, Kurjak A, Jurkovic D (1989) Contribution to the recognition of iniencephaly on the basis of a new case. J Perinat Med 17:375–379

    CAS  Google Scholar 

  21. Guala A, Massa P, Foscolo AM, Olivero F, Van Maldergem L, Danesino C (2013) Association of iniencephaly, anencephaly, and fusion of cervical vertebral bodies: a new autosomal recessive syndrome? Clin Dysmorphol 22(1):29–32

    Article  Google Scholar 

  22. Van Allen MI, Curry C, Gallagher L (1987) Limb body wall complex: I Pathogenesis. Am J Med Genet 28(3):529–548

    Article  Google Scholar 

  23. Goldstein I, Winn HN, Hobbins JC (1989) Prenatal diagnostic criteria for body stalk anomaly. Am J Perinatol 6(1):84–85

    Article  CAS  Google Scholar 

  24. Bijok J, Massalska D, Kucińska-Chahwan A et al (2017) Complex malformations involving the fetal body wall—definition and classification issues. Prenat Diagn 37(10):1033–1039

    Article  Google Scholar 

  25. Russo R, D’Armiento M, Angrisani P, Vecchione R (1993) Limb body wall complex: a critical review and a nosological proposal. Am J Med Genet 47(6):893–900

    Article  CAS  Google Scholar 

  26. Yazici LE, Malatyalioglu E, Sakinci M et al (2012) Chromosomal anomalies and additional sonographic findings in fetuses with open neural tube defects. Arch Gynecol Obstet 286(6):1393–1398

    Article  Google Scholar 

  27. Kennedy D, Chitayat D (1998) Winsor EJT Prenatally diagnosed neural tube defects: ultrasound, chromosome and autopsy or postnatal findings in 212 cases. Am J Med Genet 77:317–321

    Article  CAS  Google Scholar 

  28. Sepulveda W, Corral E, Ayala C, Be C, Gutierrez J, Vasquez P (2004) Chromosomal abnormalities in fetuses with open neural tube defects: prenatal identification with ultrasound. Ultrasound Obstet Gynecol 23(4):352–356

    Article  CAS  Google Scholar 

  29. Akolekar R, Beta J, Picciarelli G et al (2015) Procedure—related risk of miscarriage following amniocentesis and chorionic villus sampling: a systematic review and meta-analysis. Ultrasound Obstet Gynecol 45(1):16–26

    Article  CAS  Google Scholar 

  30. Neural tube defects, Practice Bulletin No. 187. American College of Obstetricians and Gynecologists. Obstet Gynecol 2017;130:e279–90

  31. Chen CP (2007) Chromosomal abnormalities associated with omphalocele. Taiwan J Obstet Gynecol 46:1–8

    Article  Google Scholar 

  32. Tobin M, Gunaji R, Walsh JC, Grice GP (2019) A review of genetic factors underlying craniorachischisis and omphalocele: inspired by a unique trisomy 18 case. Am J Med Genet Part A 179A:1642–1651

    Google Scholar 

  33. Moore CA, Harmon JP, Padilla LM, Castro VB, Weaver DD (1988) Neural tube defects and omphalocele in trisomy 18. Clin Genet 34(2):98–103

    Article  CAS  Google Scholar 

  34. Van Maldergem LMD, Gillerot YMD, Koulischer LMD (1989) Neural tube defects and omphalocele in trisomy 18. Clin Genet 1989(35):77–79

    Google Scholar 

  35. Chen C-P (2007) Chromosomal abnormalities associated with neural tube defects: full aneuploidy. Taiwan J Obstet Gynecol 46(4):325–335

    Article  Google Scholar 

  36. Harper MA, Ruiz C, Pettenati MJ, Rao PN (1994) Triploid partial molar pregnancy detected through maternal serum alpha-fetoprotein and HCG screening. Obstet Gynecol 83(5 Pt 2):844–846

    CAS  Google Scholar 

  37. Babcook CJ, Goldstein RB, Filly RA (1995) Prenatally detected fetal myelomeningocele: is karyotype analysis warranted? Radiology 194(2):491–494

    Article  CAS  Google Scholar 

  38. Philipp T, Grillenberger K, Separovic ER, Philipp K, Kalousek DK (2004) Effects of triploidy on early human development. Prenat Diagn 24(4):276–281

    Article  CAS  Google Scholar 

  39. Massalska D, Bijok J, Ilnicka A, Jakiel G, Roszkowski T (2017) Triploidy—variability of sonographic phenotypes. Prenat Diagn 37(8):774–780

    Article  Google Scholar 

  40. Plaja A, Vendrell T, Sarret E, Toran N, Mediano C (1994) Terminal deletion of Xp in a dysmorphic anencephalic fetus. Prenat Diagn 14:410–412

    Article  CAS  Google Scholar 

  41. Hol FA, Geurds MP, Chatkupt S et al (1996) PAX genes and human neural tube defects: an amino acid substitution in PAX1 in a patient with spina bifida. J Med Genet 33:655–660

    Article  CAS  Google Scholar 

  42. Lord J, McMullan DJ, Eberhardt RY et al (2019) Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (2): a cohort study. Lancet 393(10173):747–757

    Article  CAS  Google Scholar 

  43. Petrovski S, Aggarwal V, Giordano JL et al (2019) Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study. Lancet 393:758–767

    Article  CAS  Google Scholar 

  44. Becher N, Andreasen L, Sandager P et al (2020) Implementation of exome sequencing in fetal diagnostics-data and experiences from a tertiary center in Denmark. Acta Obstet Gynecol Scand 99(6):783–790

    Article  CAS  Google Scholar 

  45. Quinlan-Jones E, Kilby MD, Greenfield S et al (2016) Prenatal whole exome sequencing: the views of clinicians, scientists, genetic counsellors and patient representatives. Prenat Diagn 36:935–941

    Article  Google Scholar 

  46. Best S, Wou K, Vora N, Van der Veyver IB, Wapner R, Chitty LS (2018) Promises, pitfalls and practicalities of prenatal whole exome sequencing. Prenat Diagn 38(1):10–19

    Article  CAS  Google Scholar 

  47. Wang L, Ren A, Tian T, Li N, Cao X, Zhang P, Jin L, Li Z, Shen Y, Zhang B, Finnell RH, Lei Y (2019) Whole-exome sequencing identifies damaging de novo variants in anencephalic cases. Front Neurosci 29(13):1285

    Article  Google Scholar 

  48. Seeds JW, Cefalo RC, Herbert WN (1982) Amniotic band syndrome. Am J Obstet Gynecol 144(3):243–248

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank patients and health professionals for collaboration.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

JB and TR contributed to the study conception and design. Data collection was performed by JB, SD, TR, BN and SG-Z. Material preparation and analysis were performed by JB, AK-C and DM. The first draft of the manuscript was written by JB and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Julia Bijok.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bijok, J., Dąbkowska, S., Kucińska-Chahwan, A. et al. Prenatal diagnosis of acrania/exencephaly/anencephaly sequence (AEAS): additional structural and genetic anomalies. Arch Gynecol Obstet 307, 293–299 (2023). https://doi.org/10.1007/s00404-022-06584-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-022-06584-3

Keyword

Navigation