Skip to main content

Neuroimaging and Genetics in Brain Maldevelopment

  • Chapter
  • First Online:
Fetal Morph Functional Diagnosis

Part of the book series: Comprehensive Gynecology and Obstetrics ((CGO))

  • 396 Accesses

Abstract

Fetal brain malformations diagnosed in early pregnancy are limited to cranial bifidum, spinal bifidum, and holoprosencephaly. Other brain dysmorphic disorders occur after the first trimester because neuronal growth, including proliferation, migration, and post-migrational development, starting from 3 months of gestation. Recent advanced technology with three-dimensional (3D) ultrasound has accelerated prenatal neuroimaging. Trans-fontanelle brain imaging by transabdominal or transvaginal ultrasound has been introduced in routine clinical practice. A combination of 3D ultrasound and the trans-fontanelle procedure has guided us to the systematic neuroimaging. However, congenital brain abnormalities cannot be classified only by morphological imaging diagnosis, but are now being categorized based on causal genetic factors. In this chapter, the author describes the imaging diagnoses and genetic causes and of fetal cerebral disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pooh RK, Kurjak A. 3D/4D sonography moved prenatal diagnosis of fetal anomalies from the second to the first trimester of pregnancy. J Matern Fetal Neonatal Med. 2012;25(5):433–55. https://doi.org/10.15386/cjmed-437.

    Article  PubMed  Google Scholar 

  2. Pooh RK, Shiota K, Kurjak A. Imaging of the human embryo with magnetic resonance imaging microscopy and high-resolution transvaginal 3-dimensional sonography: human embryology in the 21st century. Am J Obstet Gynecol. 2011;204(1) https://doi.org/10.1016/j.ajog.2010.07.028.

  3. Pooh RK. Sonoembryology by 3D HDlive silhouette ultrasound – What is added by the “see-through fashion”? J Perinat Med. 2016;44(2) https://doi.org/10.1515/jpm-2016-0008.

  4. Copp AJ, Greene NDE. Genetics and development of neural tube defects. J Pathol. 2010; https://doi.org/10.1002/path.2643.

  5. Greene NDE, Copp AJ. Development of the vertebrate central nervous system: formation of the neural tube. Prenat Diagn. 2009; https://doi.org/10.1002/pd.2206.

  6. Rolo A, Galea GL, Savery D, Greene NDE, Andrew J. Novel mouse model of encephalocele: post-neurulation origin and relationship to open neural tube defects. DMM Dis Model Mech. :2019. https://doi.org/10.1242/dmm.040683.

  7. Cohen MM. Perspectives on holoprosencephaly: Part I. Epidemiology, genetics, and syndromology. Teratology. 1989; https://doi.org/10.1002/tera.1420400304.

  8. Matsunaga E, Shiota K. Holoprosencephaly in human embryos: epidemiologic studies of 150 cases. Teratology. 1977; https://doi.org/10.1002/tera.1420160304.

  9. Cohen MM. Holoprosencephaly: clinical, anatomic, and molecular dimensions. Birth Defects Res Part A – Clin Mol Teratol. 2006; https://doi.org/10.1002/bdra.20295.

  10. Roessler E, Muenke M. The molecular genetics of holoprosencephaly. Am J Med Genet Part C Semin Med Genet. 2010; https://doi.org/10.1002/ajmg.c.30236.

  11. Robbins DJ, Nybakken KE, Kobayashi R, Sisson JC, Bishop JM, Thérond PP. Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2. Cell. 1997; https://doi.org/10.1016/S0092-8674(00)80331-1.

  12. Robbins DJ, Fei DL, Riobo NA. The hedgehog signal transduction network. Sci Signal. 2012; https://doi.org/10.1126/scisignal.2002906.

  13. Blaas HGK. Holoprosencephaly. In: Obstetric imaging: fetal diagnosis and care. 2nd ed; 2017. https://doi.org/10.1016/B978-0-323-44548-1.00039-5.

    Chapter  Google Scholar 

  14. Edwards TJ, Sherr EH, Barkovich AJ, Richards LJ. Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes. Brain. 2014; https://doi.org/10.1093/brain/awt358.

  15. O’Leary DDM, Chou SJ, Sahara S. Area patterning of the mammalian cortex. Neuron. 2007; https://doi.org/10.1016/j.neuron.2007.10.010.

  16. Hoerder-Suabedissen A, Hayashi S, Upton L, et al. Subset of cortical layer 6b neurons selectively innervates higher order thalamic nuclei in mice. Cereb Cortex. 2018; https://doi.org/10.1093/cercor/bhy036.

  17. Puthuran MJ, Rowland-Hill CA, Simpson J, et al. Chromosome 1q42 deletion and agenesis of the corpus callosum [3]. Am J Med Genet. 2005; https://doi.org/10.1002/ajmg.a.30888.

  18. Filges I, Röthlisberger B, Boesch N, et al. Interstitial deletion 1q42 in a patient with agenesis of corpus callosum: phenotype-genotype comparison to the 1q41q42 microdeletion suggests a contiguous 1q4 syndrome. Am J Med Genet Part A. 2010; https://doi.org/10.1002/ajmg.a.33330.

  19. Righini A, Ciosci R, Selicorni A, et al. Brain magnetic resonance imaging in Wolf-Hirschhorn syndrome. Neuropediatrics. 2007; https://doi.org/10.1055/s-2007-981685.

  20. O’Driscoll MC, Black GCM, Clayton-Smith J, Sherr EH, Dobyns WB. Identification of genomic loci contributing to agenesis of the corpus callosum. Am J Med Genet Part A. :2010. https://doi.org/10.1002/ajmg.a.33558.

  21. Heide S, Keren B, Billette de Villemeur T, et al. Copy number variations found in patients with a corpus callosum abnormality and intellectual disability. J Pediatr. 2017; https://doi.org/10.1016/j.jpeds.2017.02.023.

  22. Schell-Apacik CC, Wagner K, Bihler M, et al. Agenesis and dysgenesis of the corpus callosum: clinical, genetic and neuroimaging findings in a series of 41 patients. Am J Med Genet Part A. 2008; https://doi.org/10.1002/ajmg.a.32476.

  23. Chen CP, Chang TY, Guo WY, et al. Chromosome 17p13.3 deletion syndrome: ACGH characterization, prenatal findings and diagnosis, and literature review. Gene. 2013; https://doi.org/10.1016/j.gene.2013.09.044.

  24. Chen CP, Chien SC. Prenatal sonographic features of Miller-Dieker syndrome. J Med Ultrasound. 2010; https://doi.org/10.1016/j.jmu.2010.11.002.

  25. Kitamura K, Yanazawa M, Sugiyama N, et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet. 2002; https://doi.org/10.1038/ng1009.

  26. Kato M, Das S, Petras K, et al. Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Hum Mutat. 2004; https://doi.org/10.1002/humu.10310.

  27. Dobyns WB, Berry-Kravis E, Havernick NJ, Holden KR, Viskochil D. X-linked lissencephaly with absent corpus callosum and ambiguous genitalia. Am J Med Genet. 1999; https://doi.org/10.1002/(SICI)1096-8628(19991008)86:4<331::AID-AJMG7>3.0.CO;2-P.

  28. Bonneau D, Toutain A, Laquerrière A, et al. X-linked lissencephaly with absent corpus callosum and ambiguous genitalia (XLAG): clinical, magnetic resonance imaging, and neuropathological findings. Ann Neurol. 2002; https://doi.org/10.1002/ana.10119.

  29. Fransen E, Vits L, Van Camp G, Willems PJ. The clinical spectrum of mutations in L1, a neuronal cell adhesion molecule. Am J Med Genet. 1996; https://doi.org/10.1002/(SICI)1096-8628(19960712)64:1<73::AID-AJMG11>3.0.CO;2-P.

  30. Yamasaki M, Thompson P, Lemmon V. CRASH syndrome: mutations in L1CAM correlate with severity of the disease. Neuropediatrics. 1997; https://doi.org/10.1055/s-2007-973696.

  31. Aicardi J. Aicardi syndrome. In: Brain and development; 2005. https://doi.org/10.1016/j.braindev.2003.11.011.

    Chapter  Google Scholar 

  32. Lund C, Bjørnvold M, Tuft M, Kostov H, Røsby O, Selmer KK. Aicardi syndrome: an epidemiologic and clinical study in Norway. Pediatr Neurol. 2015; https://doi.org/10.1016/j.pediatrneurol.2014.10.022.

  33. Parrini E, Conti V, Dobyns WB, Guerrini R. Genetic basis of brain malformations. Mol Syndromol. 2016; https://doi.org/10.1159/000448639.

  34. Guerrini R, Dobyns WB. Malformations of cortical development: clinical features and genetic causes. Lancet Neurol. 2014; https://doi.org/10.1016/S1474-4422(14)70040-7.

  35. Desikan RS, Barkovich AJ. Malformations of cortical development. Ann Neurol. 2016;80(6):797–810. https://doi.org/10.1002/ana.24793.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gilmore EC, Walsh CA. Genetic causes of microcephaly and lessons for neuronal development. Wiley Interdiscip Rev Dev Biol. 2013; https://doi.org/10.1002/wdev.89.

  37. Yu TW, Mochida GH, Tischfield DJ, et al. Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat Genet. 2010; https://doi.org/10.1038/ng.683.

  38. Jackson AP, Eastwood H, Bell SM, et al. identification of microcephalin, a protein implicated in determining the size of the human brain. Am J Hum Genet. 2002; https://doi.org/10.1086/341283.

  39. Nicholas AK, Khurshid M, Désir J, et al. WDR62 is associated with the spindle pole and is mutated in human microcephaly. Nat Genet. 2010; https://doi.org/10.1038/ng.682.

  40. Trimborn M, Bell SM, Felix C, et al. Mutations in microcephalin cause aberrant regulation of chromosome condensation. Am J Hum Genet. 2004; https://doi.org/10.1086/422855.

  41. Brunk K, Vernay B, Griffith E, et al. Microcephalin coordinates mitosis in the syncytial Drosophila embryo. J Cell Sci. 2007; https://doi.org/10.1242/jcs.014290.

  42. Bond J, Roberts E, Mochida GH, et al. ASPM is a major determinant of cerebral cortical size. Nat Genet. 2002; https://doi.org/10.1038/ng995.

  43. Bond J, Roberts E, Springell K, et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat Genet. 2005; https://doi.org/10.1038/ng1539.

  44. Kumar A, Girimaji SC, Duvvari MR, Blanton SH. Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly. Am J Hum Genet. 2008; https://doi.org/10.1016/j.ajhg.2009.01.017.

  45. Bilgüvar K, Öztürk AK, Louvi A, et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature. :2010. https://doi.org/10.1038/nature09327.

  46. Kaya B, Ali Kemal O, Angeliki L, et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature. 2011;

    Google Scholar 

  47. Guernsey DL, Jiang H, Hussin J, et al. Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4. Am J Hum Genet. 2010; https://doi.org/10.1016/j.ajhg.2010.06.003.

  48. Toi A, Lister WS, Fong KW. How early are fetal cerebral sulci visible at prenatal ultrasound and what is the normal pattern of early fetal sulcal development? Ultrasound Obstet Gynecol. 2004; https://doi.org/10.1002/uog.1802.

  49. Pooh RK. The role of imaging detection of congenital defects in the era of PGT-A and NIPT. J Perinat Med. 2019; https://doi.org/10.1515/jpm-2019-2501.

  50. Pooh RK. Fetal brain imaging. Ultrasound Med Biol. 2017; https://doi.org/10.1016/j.ultrasmedbio.2017.08.1416.

  51. Pooh RK. Fetal neuroimaging of neural migration disorder. Ultrasound Clin. 2008; https://doi.org/10.1016/j.cult.2008.09.007.

  52. Poon LC, Sahota DS, Chaemsaithong P, et al. Transvaginal three-dimensional ultrasound assessment of Sylvian fissures at 18–30 weeks’ gestation. Ultrasound Obstet Gynecol. 2019;54(2) https://doi.org/10.1002/uog.20172.

  53. Pooh RK, Machida M, Nakamura T, et al. Increased Sylvian fissure angle as early sonographic sign of malformation of cortical development. Ultrasound Obstet Gynecol. 2019;54(2) https://doi.org/10.1002/uog.20171.

  54. Yoshida A, Kobayashi K, Manya H, et al. Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell. 2001; https://doi.org/10.1016/S1534-5807(01)00070-3.

  55. Hehr U, Uyanik G, Gross C, et al. Novel POMGnT1 mutations define broader phenotypic spectrum of muscle-eye-brain disease. Neurogenetics. 2007; https://doi.org/10.1007/s10048-007-0096-y.

  56. Godfrey C, Clement E, Mein R, et al. Refining genotype-phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain. 2007; https://doi.org/10.1093/brain/awm212.

  57. Kobayashi K, Nakahori Y, Miyake M, et al. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature. 1998; https://doi.org/10.1038/28653.

  58. Toda T, Kobayashi K, Kondo-Iida E, Sasaki J, Nakamura Y. The Fukuyama congenital muscular dystrophy story. Neuromuscul Disord. 2000; https://doi.org/10.1016/S0960-8966(99)00109-1.

  59. Takeda S. Fukutin is required for maintenance of muscle integrity, cortical histiogenesis and normal eye development. Hum Mol Genet. 2003; https://doi.org/10.1093/hmg/ddg153.

  60. Friocourt G, Kanatani S, Tabata H, et al. Cell-autonomous roles of ARX in cell proliferation and neuronal migration during corticogenesis. J Neurosci. 2008; https://doi.org/10.1523/JNEUROSCI.1067-08.2008.

  61. Friocourt G, Poirier K, Rakić S, Parnavelas JG, Chelly J. The role of ARX in cortical development. Eur J Neurosci. 2006; https://doi.org/10.1111/j.1460-9568.2006.04629.x.

  62. Sherr EH. The ARX story (epilepsy, mental retardation, autism, and cerebral malformations): one gene leads to many phenotypes. Curr Opin Pediatr. 2003; https://doi.org/10.1097/00008480-200312000-00004.

  63. Colasante G, Simonet JC, Calogero R, et al. ARX regulates cortical intermediate progenitor cell expansion and upper layer neuron formation through repression of Cdkn1c. Cereb Cortex. 2015; https://doi.org/10.1093/cercor/bht222.

  64. Folsom TD, Fatemi SH. The involvement of Reelin in neurodevelopmental disorders. Neuropharmacology. 2013; https://doi.org/10.1016/j.neuropharm.2012.08.015.

  65. Tissir F, Goffinet AM. Reelin and brain development. Nat Rev Neurosci. 2003; https://doi.org/10.1038/nrn1113.

  66. Chen Y, Beffert U, Ertunc M, et al. Reelin modulates NMDA receptor activity in cortical neurons. J Neurosci. 2005; https://doi.org/10.1523/JNEUROSCI.1951-05.2005.

  67. Kato M. Genotype-phenotype correlation in neuronal migration disorders and cortical dysplasias. Front Neurosci. 2015; https://doi.org/10.3389/fnins.2015.00181.

  68. Fallet-Bianco C, Laquerrière A, Poirier K, et al. Mutations in tubulin genes are frequent causes of various foetal malformations of cortical development including microlissencephaly. Acta Neuropathol Commun. 2014; https://doi.org/10.1186/2051-5960-2-69.

  69. Laquerriere A, Gonzales M, Saillour Y, et al. De novo TUBB2B mutation causes fetal akinesia deformation sequence with microlissencephaly: an unusual presentation of tubulinopathy. Eur J Med Genet. 2016; https://doi.org/10.1016/j.ejmg.2015.12.007.

  70. Harding BN, Moccia A, Drunat S, et al. Mutations in citron kinase cause recessive microlissencephaly with multinucleated neurons. Am J Hum Genet. 2016; https://doi.org/10.1016/j.ajhg.2016.07.003.

  71. Barkovich AJ, Ferriero DM, Barr RM, et al. Microlissencephaly: a heterogeneous malformation of cortical development. Neuropediatrics. 1998; https://doi.org/10.1055/s-2007-973545.

  72. Poirier K, Martinovic J, Laquerrière A, et al. Rare ACTG1 variants in fetal microlissencephaly. Eur J Med Genet. 2015; https://doi.org/10.1016/j.ejmg.2015.06.006.

  73. Di Donato N, Chiari S, Mirzaa GM, et al. Lissencephaly: expanded imaging and clinical classification. Am J Med Genet Part A. 2017; https://doi.org/10.1002/ajmg.a.38245.

  74. McGahan JP, Grix A, Gerscovich EO. Prenatal diagnosis of lissencephaly: Miller-Dieker syndrome. J Clin Ultrasound. 1994; https://doi.org/10.1002/jcu.1870220908.

  75. Greco P, Resta M, Vimercati A, et al. Antenatal diagnosis of isolated lissencephaly by ultrasound and magnetic resonance imaging. Ultrasound Obstet Gynecol. 1998; https://doi.org/10.1046/j.1469-0705.1998.12040276.x.

  76. Kojima K, Suzuki Y, Seki K, et al. Prenatal diagnosis of lissencephaly (type II) by ultrasound and fast magnetic resonance imaging. Fetal Diagn Ther. 2002; https://doi.org/10.1159/000048003.

  77. Fong KW, Ghai S, Toi A, Blaser S, Winsor EJT, Chitayat D. Prenatal ultrasound findings of lissencephaly associated with Miller-Dieker syndrome and comparison with pre- and postnatal magnetic resonance imaging. Ultrasound Obstet Gynecol. 2004; https://doi.org/10.1002/uog.1777.

  78. Gha S, Fong KW, Toi A, Chitayat D, Pantazi S, Blaser S. Prenatal US and MR imaging findings of lissencephaly: review of fetal cerebral sulcal development. Radiographics. 2006; https://doi.org/10.1148/rg.262055059.

  79. Leventer RJ, Jansen A, Pilz DT, et al. Clinical and imaging heterogeneity of polymicrogyria: a study of 328 patients. Brain. 2010; https://doi.org/10.1093/brain/awq078.

  80. Stutterd CA, Leventer RJ. Polymicrogyria: a common and heterogeneous malformation of cortical development. Am J Med Genet Part C Semin Med Genet. 2014; https://doi.org/10.1002/ajmg.c.31399.

  81. Manzini MC, Walsh CA. The genetics of brain malformations. In: The genetics of neurodevelopmental disorders; 2015. https://doi.org/10.1002/9781118524947.ch7.

    Chapter  Google Scholar 

  82. Smigiel R, Cabala M, Jakubiak A, et al. Novel COL4A1 mutation in an infant with severe dysmorphic syndrome with schizencephaly, periventricular calcifications, and cataract resembling congenital infection. Birth Defects Res A Clin Mol Teratol. 2016; https://doi.org/10.1002/bdra.23488.

  83. Watanabe J, Okamoto K, Ohashi T, et al. Malignant hyperthermia and cerebral venous sinus thrombosis after ventriculoperitoneal shunt in infant with schizencephaly and COL4A1 Mutation. World Neurosurg. 2019; https://doi.org/10.1016/j.wneu.2019.04.156.

  84. Errata to Intracranial hemorrhage and tortuosity of veins detected on susceptibility-weighted imaging of a child with a type IV collagen α1 mutation and schizencephaly (Singapore Med J 14,3 223-226, 2014 10.2463/mrms.2014-0060). Magn Reson Med Sci. :2015. https://doi.org/10.2463/mrms.2014-0060er.

  85. Fox NS, Monteagudo A, Kuller JA, Craigo S, Norton ME. Mild fetal ventriculomegaly: diagnosis, evaluation, and management. Am J Obstet Gynecol. 2018; https://doi.org/10.1016/j.ajog.2018.04.039.

  86. Shaheen R, Sebai MA, Patel N, et al. The genetic landscape of familial congenital hydrocephalus. Ann Neurol. 2017; https://doi.org/10.1002/ana.24964.

  87. Ekici AB, Hilfinger D, Jatzwauk M, et al. Disturbed Wnt signalling due to a mutation in CCDC88C causes an autosomal recessive non-syndromic hydrocephalus with medial diverticulum. Mol Syndromol. 2010; https://doi.org/10.1159/000319859.

  88. Al-Dosari MS, Al-Owain M, Tulbah M, et al. Mutation in MPDZ causes severe congenital hydrocephalus. J Med Genet. 2013; https://doi.org/10.1136/jmedgenet-2012-101294.

  89. Kousi M, Katsanis N. The genetic basis of hydrocephalus. Annu Rev Neurosci. 2016; https://doi.org/10.1146/annurev-neuro-070815-014023.

  90. Itoh K, Fushiki S. The role of L1cam in murine corticogenesis, and the pathogenesis of hydrocephalus. Pathol Int. 2015; https://doi.org/10.1111/pin.12245.

  91. Takahashi S, Makita Y, Okamoto N, Miyamoto A, Oki J. L1CAM mutation in a Japanese family with X-linked hydrocephalus: a study for genetic counseling. Brain Dev. 1997; https://doi.org/10.1016/S0387-7604(97)00079-X.

  92. Jouet M, Rosenthal A, Armstrong G, et al. X–linked spastic paraplegia (SPG1), MASA syndrome and X–linked hydrocephalus result from mutations in the L1 gene. Nat Genet. 1994; https://doi.org/10.1038/ng0794-402.

  93. Adle-Biassette H, Saugier-Veber P, Fallet-Bianco C, et al. Neuropathological review of 138 cases genetically tested for X-linked hydrocephalus: evidence for closely related clinical entities of unknown molecular bases. Acta Neuropathol. 2013; https://doi.org/10.1007/s00401-013-1146-1.

  94. Rachel RA, Yamamoto EA, Dewanjee MK, et al. CEP290 alleles in mice disrupt tissue-specific cilia biogenesis and recapitulate features of syndromic ciliopathies. Hum Mol Genet. 2015; https://doi.org/10.1093/hmg/ddv123.

  95. Iannicelli M, Brancati F, Mougou-Zerelli S, et al. Novel TMEM67 mutations and genotype-phenotype correlates in meckelin-related ciliopathies. Hum Mutat. 2010; https://doi.org/10.1002/humu.21239.

  96. Abdelhamed ZA, Natarajan S, Wheway G, et al. The Meckel-Gruber syndrome protein TMEM67 controls basal body positioning and epithelial branching morphogenesis in mice via the non-canonical Wnt pathway. DMM Dis Model Mech. 2015; https://doi.org/10.1242/dmm.019083.

  97. Leightner AC, Hommerding CJ, Peng Y, et al. The meckel syndrome protein meckelin (TMEM67) is a key regulator of cilia function but is not required for tissue planar polarity. Hum Mol Genet. 2013; https://doi.org/10.1093/hmg/ddt054.

  98. Valente EM, Logan CV, Mougou-Zerelli S, et al. Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes. Nat Genet. 2010; https://doi.org/10.1038/ng.594.

  99. Xiao D, Lv C, Zhang Z, et al. Novel CC2D2A compound heterozygous mutations cause Joubert syndrome. Mol Med Rep. 2017; https://doi.org/10.3892/mmr.2016.6007.

  100. Johnson K, Bertoli M, Phillips L, et al. Detection of variants in dystroglycanopathy-associated genes through the application of targeted whole-exome sequencing analysis to a large cohort of patients with unexplained limb-girdle muscle weakness. Skelet Muscle. 2018;8(1):1–12. https://doi.org/10.1186/s13395-018-0170-1.

    Article  CAS  Google Scholar 

  101. Mirzaa GM, Rivière JB, Dobyns WB. Megalencephaly syndromes and activating mutations in the PI3K-AKT pathway: MPPH and MCAP. Am J Med Genet Part C Semin Med Genet. 2013; https://doi.org/10.1002/ajmg.c.31361.

  102. Itoh K, Pooh R, Kanemura Y, Yamasaki M, Fushiki S. Brain malformation with loss of normal FGFR3 expression in thanatophoric dysplasia type I. Neuropathology. 2013; https://doi.org/10.1111/neup.12036.

  103. Dicuonzo F, Palma M, Fiume M, et al. Cerebrovascular disorders in the prenatal period. J Child Neurol. 2008; https://doi.org/10.1177/0883073808318054.

  104. Özduman K, Pober BR, Barnes P, et al. Fetal stroke. Pediatr Neurol. 2004; https://doi.org/10.1016/j.pediatrneurol.2003.08.004.

  105. Elchalal U, Yagel S, Gomori JM, et al. Fetal intracranial hemorrhage (fetal stroke): does grade matter? Ultrasound Obstet Gynecol. 2005; https://doi.org/10.1002/uog.1969.

  106. Huang YF, Chen WC, Tseng JJ, Ho ESC, Chou MM. Fetal intracranial hemorrhage (fetal stroke): report of four antenatally diagnosed cases and review of the literature. Taiwan J Obstet Gynecol. 2006; https://doi.org/10.1016/S1028-4559(09)60211-4.

  107. Putbrese B, Kennedy A. Findings and differential diagnosis of fetal intracranial haemorrhage and fetal ischaemic brain injury: what is the role of fetal MRI? Br J Radiol. 2017; https://doi.org/10.1259/bjr.20160253.

  108. Kutuk MS, Yikilmaz A, Ozgun MT, et al. Prenatal diagnosis and postnatal outcome of fetal intracranial hemorrhage. Child’s Nerv Syst. 2014; https://doi.org/10.1007/s00381-013-2243-0.

  109. Sims ME, Turkel SB, Halterman G, Paul RH. Brain injury and intrauterine death. Am J Obstet Gynecol. 1985; https://doi.org/10.1016/0002-9378(85)90503-4.

  110. Lichtenbelt KD, Pistorius LR, De Tollenaer SM, Mancini GM, De Vries LS. Prenatal genetic confirmation of a COL4A1 mutation presenting with sonographic fetal intracranial hemorrhage. Ultrasound Obstet Gynecol. 2012; https://doi.org/10.1002/uog.11070.

  111. Garel C, Rosenblatt J, Moutard ML, et al. Fetal intracerebral hemorrhage and COL4A1 mutation: promise and uncertainty. Ultrasound Obstet Gynecol. 2013; https://doi.org/10.1002/uog.12268.

  112. Vermeulen RJ, Peeters-Scholte C, Van Vugt J, et al. Fetal origin of brain damage in 2 infants with a COL4A1 mutation: fetal and neonatal MRI. Neuropediatrics. 2011; https://doi.org/10.1055/s-0031-1284388.

  113. de Vries LS, Pistorius L, Lichtenbelt KD, Koopman C, Meuwissen MEC, Mancini GMS. COL4A1 mutation: expansion of the phenotype. Pediatr Res. 2011; https://doi.org/10.1038/pr.2011.406.

  114. Meuwissen MEC, Halley DJJ, Smit LS, et al. The expanding phenotype of COL4A1 and COL4A2 mutations: clinical data on 13 newly identified families and a review of the literature. Genet Med. 2015; https://doi.org/10.1038/gim.2014.210.

  115. De Vries LS, Koopman C, Groenendaal F, et al. COL4A1 mutation in two preterm siblings with antenatal onset of parenchymal hemorrhage. Ann Neurol. 2009; https://doi.org/10.1002/ana.21525.

  116. Colin E, Sentilhes L, Sarfati A, et al. Fetal intracerebral hemorrhage and cataract: think COL4A1. J Perinatol. 2014; https://doi.org/10.1038/jp.2013.135.

  117. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978; https://doi.org/10.1016/S0022-3476(78)80282-0.

  118. Vergani P, Strobelt N, Locatelli A, et al. Clinical significance of fetal intracranial hemorrhage. Am J Obstet Gynecol. 1996; https://doi.org/10.1053/ob.1996.v175.a73598.

  119. Van den Veyver IB. Prenatally diagnosed developmental abnormalities of the central nervous system and genetic syndromes: a practical review. Prenat Diagn. 2019;39(9):666–78. https://doi.org/10.1002/pd.5520.

    Article  PubMed  Google Scholar 

  120. Pooh RK. The study of early pregnancy with genetic and high-resolution ultrasound. J Perinat Med. 2013;

    Google Scholar 

  121. Pooh RK. Sonogenetics in fetal neurology. Semin Fetal Neonatal Med. 2012; https://doi.org/10.1016/j.siny.2012.07.005.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pooh, R.K. (2021). Neuroimaging and Genetics in Brain Maldevelopment. In: Masuzaki, H. (eds) Fetal Morph Functional Diagnosis. Comprehensive Gynecology and Obstetrics. Springer, Singapore. https://doi.org/10.1007/978-981-15-8171-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8171-7_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8170-0

  • Online ISBN: 978-981-15-8171-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics