Skip to main content
Log in

Impact of gene polymorphisms on the systemic toxicity to paclitaxel/carboplatin chemotherapy for treatment of gynecologic cancers

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Gynecologic malignancies are often detected in advanced stages, requiring chemotherapy with taxane/platinum combinations, which may cause severe toxicities, such as neutropenia and peripheral neuropathy. Gene polymorphisms are suspected as possible causes for the interindividual variability on chemotherapy toxicities.

Objective

To evaluate the role of ABCB1 1236C>T, 3435C>T; CYP2C8*3; CYP3A5*3C variants on paclitaxel/carboplatin toxicities.

Methods

A cohort of 503 gynecologic cancer patients treated with paclitaxel/carboplatin at the Brazilian National Cancer Institute (INCA-Brazil) was recruited (2013–2017). Polymorphisms were genotyped by real-time PCR, and toxicities were evaluated by patients’ interviews at each chemotherapy cycle and by data collection from electronic records. The association of clinical features and genotypes with severe toxicities was estimated using Pearson’s Chi square tests and multiple regression analyses, with calculation of adjusted odds ratios (ORadjusted), and respective 95% confidence intervals (95% CI).

Results

CYP2C8*3 was significantly associated with increased risks of severe (grades 3–4) neutropenia (ORadjusted 2.11; 95% CI 1.24–3.6; dominant model) and severe thrombocytopenia (ORadjusted 4.93; 95% CI 1.69–14.35; recessive model), whereas ABCB1 variant genotypes (ORadjusted 2.13; 95% CI 1.32–3.42), in association with CYP2C8*3 wild type (GG) (ORadjusted 1.93; 95% CI 1.17–3.19), were predictive of severe fatigue.

Conclusions

The present study suggests that CYP2C8*3 is a potential predictor of hematological toxicities related to paclitaxel/carboplatin treatment. Since hematological toxicities, especially neutropenia, may lead to dose delay or treatment interruption, such prognostic evaluation may contribute to clinical management of selected patients with paclitaxel-based chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012: Globocan 2012. Int J Cancer 136:E359–E386. https://doi.org/10.1002/ijc.29210

    Article  CAS  Google Scholar 

  2. Torre LA, Islami F, Siegel RL, Ward EM, Jemal A (2017) Global cancer in women: burden and trends. Cancer Epidemiol Biomark Prev 26:444–457. https://doi.org/10.1158/1055-9965.EPI-16-0858

    Article  Google Scholar 

  3. Vaccarella S, Lortet-Tieulent J, Plummer M, Franceschi S, Bray F (2013) Worldwide trends in cervical cancer incidence: impact of screening against changes in disease risk factors. Eur J Cancer 49:3262–3273. https://doi.org/10.1016/j.ejca.2013.04.024

    Article  PubMed  Google Scholar 

  4. Benedet JL, Bender H, Jones H 3rd, Ngan HY, Pecorelli S (2000) FIGO staging classifications and clinical practice guidelines in the management of gynecologic cancers. Int J Gynecol Obstet 70:209–262. https://doi.org/10.1016/S0020-7292(00)90001-8

    Article  CAS  Google Scholar 

  5. Akin JM, Waddell JA, Solimando DA (2014) Paclitaxel and carboplatin (TC) regimen for ovarian cancer. Hosp Pharm 49:425–431. https://doi.org/10.1310/hpj4905-425

    Article  PubMed  PubMed Central  Google Scholar 

  6. Walle T, Walle UK, Kumar GN, Bhalla KN (1995) Taxol metabolism and disposition in cancer patients. Drug Metab Dispos Biol Fate Chem 23:506–512

    CAS  PubMed  Google Scholar 

  7. Kitagawa R, Katsumata N, Shibata T, Kamura T, Kasamatsu T, Nakanishi T et al (2015) Paclitaxel plus carboplatin versus paclitaxel plus cisplatin in metastatic or recurrent cervical cancer: the open-label randomized phase III trial JCOG0505. J Clin Oncol 33:2129–2135. https://doi.org/10.1200/JCO.2014.58.4391

    Article  CAS  PubMed  Google Scholar 

  8. Kogan L, Laskov I, Amajoud Z, Abitbol J, Yasmeen A, Octeau D et al (2017) Dose dense carboplatin paclitaxel improves progression free survival in patients with endometrial cancer. Gynecol Oncol 147:30–35. https://doi.org/10.1016/j.ygyno.2017.07.134

    Article  CAS  PubMed  Google Scholar 

  9. du Bois A (2003) A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. Cancer Spectr Knowl Environ 95:1320–1329. https://doi.org/10.1093/jnci/djg036

    Article  CAS  Google Scholar 

  10. Bergmann TK, Brasch-Andersen C, Gréen H, Mirza MR, Skougaard K, Wihl J et al (2012) Impact of ABCB1 variants on neutrophil depression: a pharmacogenomic study of paclitaxel in 92 women with ovarian cancer: ABCB1 VARIANTS AND NEUTROPHIL DEPRESSION. Basic Clin Pharmacol Toxicol 110:199–204. https://doi.org/10.1111/j.1742-7843.2011.00802.x

    Article  CAS  PubMed  Google Scholar 

  11. Frederiks CN, Lam SW, Guchelaar HJ, Boven E (2015) Genetic polymorphisms and paclitaxel- or docetaxel-induced toxicities: a systematic review. Cancer Treat Rev 41:935–950. https://doi.org/10.1016/j.ctrv.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  12. Gréen H, Söderkvist P, Rosenberg P, Mirghani RA, Rymark P, Lundqvist EÅ et al (2009) Pharmacogenetic studies of paclitaxel in the treatment of ovarian cancer. Basic Clin Pharmacol Toxicol 104:130–137. https://doi.org/10.1111/j.1742-7843.2008.00351.x

    Article  CAS  PubMed  Google Scholar 

  13. Bergmann TK, Gréen H, Brasch-Andersen C, Mirza MR, Herrstedt J, Hølund B et al (2011) Retrospective study of the impact of pharmacogenetic variants on paclitaxel toxicity and survival in patients with ovarian cancer. Eur J Clin Pharmacol 67:693–700. https://doi.org/10.1007/s00228-011-1007-6

    Article  CAS  PubMed  Google Scholar 

  14. Gréen H, Khan MS, Jakobsen-Falk I, Åvall-Lundqvist E, Peterson C (2011) Impact of CYP3A5*3 and CYP2C8-HapC on paclitaxel/carboplatin-induced myelosuppression in patients with ovarian cancer. J Pharm Sci 100:4205–4209. https://doi.org/10.1002/jps.22680

    Article  CAS  PubMed  Google Scholar 

  15. Hu L, Lv Q-L, Guo Y, Cheng L, Wu N-Y, Qin C-Z et al (2016) Genetic variation of CYP3A5 influences paclitaxel/carboplatin-induced toxicity in Chinese epithelial ovarian cancer patients. J Clin Pharmacol 56:349–354. https://doi.org/10.1002/jcph.587

    Article  CAS  PubMed  Google Scholar 

  16. On Behalf of the Belgian, and Luxembourg Gynaecological Oncology Group (BGOG), Lambrechts S, Lambrechts D, Despierre E, Van Nieuwenhuysen E, Smeets D et al (2015) Genetic variability in drug transport, metabolism or DNA repair affecting toxicity of chemotherapy in ovarian cancer. BMC Pharmacol Toxicol. https://doi.org/10.1186/s40360-015-0001-5

    Article  Google Scholar 

  17. McWhinney-Glass S, Winham SJ, Hertz DL, Yen Revollo J, Paul J, He Y et al (2013) Cumulative genetic risk predicts platinum/taxane-induced neurotoxicity. Clin Cancer Res 19:5769–5776. https://doi.org/10.1158/1078-0432.CCR-13-0774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. For the Scottish Gynaecological Cancer Clinical Trials Group, He YJ, Winham SJ, Hoskins JM, Glass S, Paul J et al (2016) Carboplatin/taxane-induced gastrointestinal toxicity: a pharmacogenomics study on the SCOTROC1 trial. Pharmacogenom J 16:243–248. https://doi.org/10.1038/tpj.2015.52

    Article  CAS  Google Scholar 

  19. Kim HS, Kim M-K, Chung HH, Kim JW, Park NH, Song YS et al (2009) Genetic polymorphisms affecting clinical outcomes in epithelial ovarian cancer patients treated with taxanes and platinum compounds: a Korean population-based study. Gynecol Oncol 113:264–269. https://doi.org/10.1016/j.ygyno.2009.01.002

    Article  CAS  PubMed  Google Scholar 

  20. Marsh S, Paul J, King CR, Gifford G, McLeod HL, Brown R (2007) Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer: the Scottish randomised trial in ovarian cancer. J Clin Oncol 25:4528–4535. https://doi.org/10.1200/JCO.2006.10.4752

    Article  CAS  PubMed  Google Scholar 

  21. Zamboni WC, Combest AJ, DeLoia JA, Edwards RP, Bridges AS, Zamboni BA et al (2011) Pharmacologic and phenotypic study of docetaxel in patients with ovarian or primary peritoneal cancer. Cancer Chemother Pharmacol 68:1255–1262. https://doi.org/10.1007/s00280-011-1609-9

    Article  CAS  PubMed  Google Scholar 

  22. Khrunin AV, Khokhrin DV, Moisseev AA, Gorbunova VA, Limborska SA (2014) Pharmacogenomic assessment of cisplatin-based chemotherapy outcomes in ovarian cancer. Pharmacogenomics 15:329–337. https://doi.org/10.2217/pgs.13.237

    Article  CAS  PubMed  Google Scholar 

  23. Uchiyama T, Kanno H, Ishitani K, Fujii H, Ohta H, Matsui H et al (2012) An SNP in CYP39A1 is associated with severe neutropenia induced by docetaxel. Cancer Chemother Pharmacol 69:1617–1624. https://doi.org/10.1007/s00280-012-1872-4

    Article  CAS  PubMed  Google Scholar 

  24. Rahman A, Korzekwa KR, Grogan J, Gonzalez FJ, Harris JW (1994) Selective biotransformation of taxol to 6 alpha-hydroxytaxol by human cytochrome P450 2C8. Cancer Res 54:5543–5546

    CAS  PubMed  Google Scholar 

  25. Harris JW, Rahman A, Kim BR, Guengerich FP, Collins JM (1994) Metabolism of taxol by human hepatic microsomes and liver slices: participation of cytochrome P450 3A4 and an unknown P450 enzyme. Cancer Res 54:4026–4035

    CAS  PubMed  Google Scholar 

  26. Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K et al (2001) The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 11:773–779

    Article  CAS  PubMed  Google Scholar 

  27. Sparreboom A, van Asperen J, Mayer U, Schinkel AH, Smit JW, Meijer DK et al (1997) Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci USA 94:2031–2035

    Article  CAS  PubMed  Google Scholar 

  28. Bahadur N, Leathart JB, Mutch E, Steimel-Crespi D, Dunn SA, Gilissen R et al (2002) CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6α-hydroxylase activity in human liver microsomes. Biochem Pharmacol 64:1579–1589. https://doi.org/10.1016/S0006-2952(02)01354-0

    Article  CAS  PubMed  Google Scholar 

  29. Dai D, Zeldin DC, Blaisdell JA, Chanas B, Coulter SJ, Ghanayem BI et al (2001) Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 11:597–607

    Article  CAS  PubMed  Google Scholar 

  30. Eiselt R, Domanski TL, Zibat A, Mueller R, Presecan-Siedel E, Hustert E et al (2001) Identification and functional characterization of eight CYP3A4 protein variants. Pharmacogenetics 11:447–458

    Article  CAS  PubMed  Google Scholar 

  31. Sissung TM, Baum CE, Kirkland CT, Gao R, Gardner ER, Figg WD (2010) Pharmacogenetics of membrane transporters: an update on current approaches. Mol Biotechnol 44:152–167. https://doi.org/10.1007/s12033-009-9220-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. WHO Expert Committee (1995) Physical status: the use and interpretation of anthropometry. World Health Org Tech Rep Ser 854:1–452

    Google Scholar 

  33. Salzano FM, Freire-Maia EN (1967) Populações Brasileiras; Aspectos Demográficos, Genéticos E Antropológicos. Companhia Editora Nacional, São Paulo

    Google Scholar 

  34. Refargen (2010) Rede Nacional de Farmacogenética [Internet]. https://www.refargen.org.br. Accessed 24 Sept 2018

  35. Yamamoto R, Minobe S, Kaneuchi M, Sakuragi N, Fujimoto S, Ishizaki Y et al (2002) A phase I/II study of carboplatin and paclitaxel in patients with epithelial ovarian cancer. Jpn J Clin Oncol 32:128–134

    Article  PubMed  Google Scholar 

  36. Hor SY, Lee SC, Wong CI, Lim YW, Lim RC, Wang LZ et al (2008) PXR, CAR and HNF4α genotypes and their association with pharmacokinetics and pharmacodynamics of docetaxel and doxorubicin in Asian patients. Pharmacogenom J 8:139–146. https://doi.org/10.1038/sj.tpj.6500478

    Article  CAS  Google Scholar 

  37. Kim K, Ahn J-H, Kim S-B, Jung KH, Yoon DH, Lee JS et al (2012) Prospective evaluation of the drug-metabolizing enzyme polymorphisms and toxicity profile of docetaxel in Korean patients with operable lymph node-positive breast cancer receiving adjuvant chemotherapy. Cancer Chemother Pharmacol 69:1221–1227. https://doi.org/10.1007/s00280-011-1816-4

    Article  CAS  PubMed  Google Scholar 

  38. Tulsyan S, Chaturvedi P, Singh AK, Agarwal G, Lal P, Agrawal S et al (2014) Assessment of clinical outcomes in breast cancer patients treated with taxanes: multi-analytical approach. Gene 543:69–75. https://doi.org/10.1016/j.gene.2014.04.004

    Article  CAS  PubMed  Google Scholar 

  39. Pan J, Han J, Wu J, Sheng L, Huang H, Yu Q (2008) MDR1 single nucleotide polymorphisms predict response to vinorelbine-based chemotherapy in patients with non-small cell lung cancer. Respiration 75:380–385. https://doi.org/10.1159/000108407

    Article  CAS  PubMed  Google Scholar 

  40. Narita S, Tsuchiya N, Yuasa T, Maita S, Obara T, Numakura K et al (2012) Outcome, clinical prognostic factors and genetic predictors of adverse reactions of intermittent combination chemotherapy with docetaxel, estramustine phosphate and carboplatin for castration-resistant prostate cancer. Int J Clin Oncol 17:204–211. https://doi.org/10.1007/s10147-011-0275-6

    Article  CAS  PubMed  Google Scholar 

  41. Gandara DR, Kawaguchi T, Crowley J, Moon J, Furuse K, Kawahara M et al (2009) Japanese-US common-arm analysis of paclitaxel plus carboplatin in advanced non–small-cell lung cancer: a model for assessing population-related pharmacogenomics. J Clin Oncol 27:3540–3546. https://doi.org/10.1200/JCO.2008.20.8793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tran A, Jullien V, Alexandre J, Rey E, Rabillon F, Girre V et al (2006) Pharmacokinetics and toxicity of docetaxel: role of CYP3A, MDR1, and GST polymorphisms. Clin Pharmacol Ther 79:570–580. https://doi.org/10.1016/j.clpt.2006.02.003

    Article  CAS  PubMed  Google Scholar 

  43. Tsai S-M, Lin C-Y, Wu S-H, Hou LA, Ma H, Tsai L-Y et al (2009) Side effects after docetaxel treatment in Taiwanese breast cancer patients with CYP3A4, CYP3A5, and ABCB1 gene polymorphisms. Clin Chim Acta 404:160–165. https://doi.org/10.1016/j.cca.2009.03.038

    Article  CAS  PubMed  Google Scholar 

  44. Leskelä S, Jara C, Leandro-García LJ, Martínez A, García-Donas J, Hernando S et al (2011) Polymorphisms in cytochromes P450 2C8 and 3A5 are associated with paclitaxel neurotoxicity. Pharmacogenom J 11:121–129. https://doi.org/10.1038/tpj.2010.13

    Article  CAS  Google Scholar 

  45. Kang HJ, Song IS, Lee SS, Yoo MA, Shin JG (2008) Effects of dietary salt on the expression of drug transporters, cytochrome P4503a, and nuclear receptors in rats. Xenobiotica 38:147–155. https://doi.org/10.1080/00498250701744674

    Article  CAS  PubMed  Google Scholar 

  46. Schuetz EG, Beck WT, Schuetz JD (1996) Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol Pharmacol 49:311–318

    CAS  PubMed  Google Scholar 

  47. Läpple F, von Richter O, Fromm MF, Richter T, Thon KP, Wisser H et al (2003) Differential expression and function of CYP2C isoforms in human intestine and liver. Pharmacogenetics 13:565–575. https://doi.org/10.1097/01.fpc.0000054122.14659.1e

    Article  CAS  PubMed  Google Scholar 

  48. Pérez-Ramírez C, Cañadas-Garre M, Alnatsha A, Villar E, Delgado JR, Faus-Dáder MJ et al (2016) Pharmacogenetic predictors of toxicity to platinum based chemotherapy in non-small cell lung cancer patients. Pharmacol Res 111:877–884. https://doi.org/10.1016/j.phrs.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  49. Kim H-J, Im S-A, Keam B, Ham HS, Lee KH, Kim TY et al (2015) ABCB1 polymorphism as prognostic factor in breast cancer patients treated with docetaxel and doxorubicin neoadjuvant chemotherapy. Cancer Sci 106:86–93. https://doi.org/10.1111/cas.12560

    Article  CAS  PubMed  Google Scholar 

  50. Windsor RE, Strauss SJ, Kallis C, Wood NE, Whelan JS (2012) Germline genetic polymorphisms may influence chemotherapy response and disease outcome in osteosarcoma: a pilot study. Cancer 118:1856–1867. https://doi.org/10.1002/cncr.26472

    Article  CAS  PubMed  Google Scholar 

  51. Pillot GA, Read WL, Hennenfent KL, Marsh S, Gao F, Viswanathan A et al (2006) A phase II study of irinotecan and carboplatin in advanced non-small cell lung cancer with pharmacogenomic analysis: final report. J Thorac Oncol 1:972–978

    Article  PubMed  Google Scholar 

  52. Chen S, Huo X, Lin Y, Ban H, Lin Y, Li W et al (2010) Association of MDR1 and ERCC1 polymorphisms with response and toxicity to cisplatin-based chemotherapy in non-small-cell lung cancer patients. Int J Hyg Environ Health 213:140–145. https://doi.org/10.1016/j.ijheh.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  53. Syarifah S, Siregar KB, Siregar Y (2016) Association of ATP-binding cassette sub-family B member 1 gene C3435T polymorphism with neutropenia in breast cancer patients treated with chemotherapy. Med J Indones 25:156. https://doi.org/10.13181/mji.v25i3.1326

    Article  Google Scholar 

  54. Qian C-Y, Zheng Y, Wang Y, Chen J, Liu J-Y, Zhou H-H et al (2016) Associations of genetic polymorphisms of the transporters organic cation transporter 2 (OCT2), multidrug and toxin extrusion 1 (MATE1), and ATP-binding cassette subfamily C member 2 (ABCC2) with platinum-based chemotherapy response and toxicity in non-small cell lung cancer patients. Chin J Cancer. https://doi.org/10.1186/s40880-016-0145-8

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bergmann TK, Brasch-Andersen C, Gréen H, Mirza M, Pedersen RS, Nielsen F et al (2011) Impact of CYP2C8*3 on paclitaxel clearance: a population pharmacokinetic and pharmacogenomic study in 93 patients with ovarian cancer. Pharmacogenom J 11:113–120. https://doi.org/10.1038/tpj.2010.19

    Article  CAS  Google Scholar 

  56. Lee M-Y, Apellániz-Ruiz M, Johansson I, Vikingsson S, Bergmann TK, Brøsen K et al (2015) Role of cytochrome P450 2C8*3 (CYP2C8*3) in paclitaxel metabolism and paclitaxel-induced neurotoxicity. Pharmacogenomics 16:929–937. https://doi.org/10.2217/pgs.15.46

    Article  CAS  PubMed  Google Scholar 

  57. Hertz DL, Motsinger-Reif AA, Drobish A, Winham SJ, McLeod HL, Carey LA et al (2012) CYP2C8*3 predicts benefit/risk profile in breast cancer patients receiving neoadjuvant paclitaxel. Breast Cancer Res Treat 134:401–410. https://doi.org/10.1007/s10549-012-2054-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rizzo R, Spaggiari F, Indelli M, Lelli G, Baricordi OR, Rimessi P et al (2010) Association of CYP1B1 with hypersensitivity induced by taxane therapy in breast cancer patients. Breast Cancer Res Treat 124:593–598. https://doi.org/10.1007/s10549-010-1034-5

    Article  CAS  PubMed  Google Scholar 

  59. de Graan A-JM, Elens L, Sprowl JA, Sparreboom A, Friberg LE, van der Holt B et al (2013) CYP3A4*22 genotype and systemic exposure affect paclitaxel-induced neurotoxicity. Clin Cancer Res 19:3316–3324. https://doi.org/10.1158/1078-0432.CCR-12-3786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hertz DL, Roy S, Motsinger-Reif AA, Drobish A, Clark LS, McLeod HL et al (2013) CYP2C8*3 increases risk of neuropathy in breast cancer patients treated with paclitaxel. Ann Oncol 24:1472–1478. https://doi.org/10.1093/annonc/mdt018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lam SW, Frederiks CN, van der Straaten T, Honkoop AH, Guchelaar H-J, Boven E (2016) Genotypes of CYP2C8 and FGD4 and their association with peripheral neuropathy or early dose reduction in paclitaxel-treated breast cancer patients. Br J Cancer 115:1335–1342. https://doi.org/10.1038/bjc.2016.326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Guilherme Suarez-Kurtz for the use of laboratory facilities and the personnel from the Instituto Nacional de Câncer (HC2-INCA) for logistic support in sample and data collection. The authors are grateful to Dr. Richard Koch, who kindly revised the manuscript for style and grammatical editing.

Funding

The study was supported by Fundação Carlos Chagas Filho de Amparo à Pesquisa no Rio de Janeiro (Grants E-26/010.002644/2014 and E-26/210.784/2015), and by Coordenação de Apoio ao Pessoal de Nível Superior (CAPES) via Programa de Pós-Graduação em Saúde Pública e Meio Ambiente (ENSP-FIOCRUZ). KSS and TSLS received scholarships from CAPES.

Author information

Authors and Affiliations

Authors

Contributions

CLC: data curation, formal analysis, investigation, methodology, project administration, software, visualization, writing—original draft and review. LCCJ: data curation, investigation, methodology, and visualization. LVL: data curation, investigation, methodology, and visualization. KSS: data curation, software, and visualization. TSLS: data curation and visualization. RV-J: conceptualization, funding acquisition, methodology (selection and development); project administration; resources; supervision; validation; visualization; and writing (review and editing).

Corresponding author

Correspondence to Rosane Vianna-Jorge.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical standards

The study was conducted following the international precepts of ethics in research, including the 1964 Helsinki Declaration and its later amendments, and of good clinical practice. The authors complied with the Brazilian regulation of clinical research. The study protocol was approved by the Ethics Committees of the Brazilian National Cancer Institute (INCA 20406413.6.0000.5274) and of the National School of Public Health (FIOCRUZ/CAAE 58944216.0.0000.5240), and all participants gave written consent to participate.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Castro, C.L., da Costa Junior, L.C., Lourenço, L.V. et al. Impact of gene polymorphisms on the systemic toxicity to paclitaxel/carboplatin chemotherapy for treatment of gynecologic cancers. Arch Gynecol Obstet 300, 395–407 (2019). https://doi.org/10.1007/s00404-019-05197-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-019-05197-7

Keywords

Navigation