Skip to main content

Advertisement

Log in

ABCB1 and ERCC1 gene polymorphisms are associated with nephro- and hepatotoxicity to carboplatin/paclitaxel-based chemotherapy in patients with gynecologic cancers

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Background

Paclitaxel/carboplatin combination is the standard chemotherapeutic protocol for gynecologic cancers, but severe toxicities may compromise treatment. There is great inter-individual variability regarding the incidence and severity of toxicities, which may be due to single-nucleotide polymorphisms (SNPs) affecting drug disposition or cellular sensitivity. Here we investigate the impact of selected SNPs in ERCC1, ABCB1, CYP2C8, and CYP3A5 genes on the incidence of severe toxicities, including nephro- and hepatotoxicity.

Methods

A cohort of 507 gynecological cancer patients receiving paclitaxel/carboplatin was recruited at the Brazilian National Cancer Institute (INCA-Brazil). Clinical data were obtained during routine consultations or from electronic medical records. Toxicities were graded according to the Common Terminology Criteria for Adverse Events (CTCAE 5.0). Genotyping was performed using real-time PCR.

Results

ABCB1 c.1236C>T was associated with moderate-to-severe (grades 2–4) nephrotoxicity (ORadjusted 2.40; 95% CI 1.39–4.15), even after adjustment for age (≥ 65) and diabetes. The risk association between ABCB1 c.1236C>T and moderate-to-severe nephrotoxicity following paclitaxel/carboplatin chemotherapy was also present among non-diabetic patients (ORadjusted 2.16; 95% CI 1.22–3.82). ERCC1 c.118C>T was the only individual variable associated with an increased risk for moderate-to-severe (grades 2–4) hepatotoxicity (OR 3.71; 95% CI 1.08–12.77), severe nausea (OR 4.18; 95% CI 1.59–10.95), and severe myalgia (OR 1.95; 95% CI 1.12–3.40).

Conclusions

ABCB1 c.1236C>T and ERCC1 c.118C>T might serve as potential biomarkers for the risk of moderate-to-severe toxicities to carboplatin/paclitaxel chemotherapy of gynecological cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  2. B. F. Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I (2018) 2018 Global Cancer Observatory: Cancer Today,” International Agency for Research on Cancer. [Online]. Available: https://gco.iarc.fr/today. Accessed 16 Jun 2019

  3. Benedet JL, Bender H, Pecorelli S (2000) FIGO staging classifications and clinical practice guidelines in the management of gynecologic cancers. Int J Gynecol Obstet 70(2):209–262

    Article  CAS  Google Scholar 

  4. Kogan L, Laskov I, Amajoud Z, Abitbol J, Yasmeen A, Octeau D, Fatnassi A, Kessous R, Eisenberg N, Lau S, Gotlieb WH, Salvador S (2017) Dose dense carboplatin paclitaxel improves progression free survival in patients with endometrial cancer. Gynecol Oncol 147(1):30–35

    Article  CAS  PubMed  Google Scholar 

  5. du Bois A et al (2003) A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. J Natl Cancer Inst 95(17):1320–1329

    Article  PubMed  CAS  Google Scholar 

  6. Ozols RF, Bundy BN, Greer BE, Fowler JM, Clarke-Pearson D, Burger RA, Mannel RS, DeGeest K, Hartenbach EM, Baergen R, Gynecologic Oncology Group (2003) Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol 21(17):3194–3200

    Article  CAS  PubMed  Google Scholar 

  7. De Castro CL, Carlos L, Junior C, Lourenço LV, Seba KS, Lopes TS (2019) Impact of gene polymorphisms on the systemic toxicity to paclitaxel/carboplatin chemotherapy for treatment of gynecologic cancers. Arch Gynecol Obstet. https://doi.org/10.1007/s00404-019-05197-7

  8. Kitagawa R, Katsumata N, Shibata T, Kamura T, Kasamatsu T, Nakanishi T, Nishimura S, Ushijima K, Takano M, Satoh T, Yoshikawa H (2015) Paclitaxel plus carboplatin versus paclitaxel plus cisplatin in metastatic or recurrent cervical cancer: the open-label randomized phase III trial JCOG0505. J Clin Oncol 33(19):2129–2135

    Article  CAS  PubMed  Google Scholar 

  9. Akin JM, Waddell JA, Solimando DA (2014) Paclitaxel and carboplatin (TC) regimen for ovarian cancer. Hosp Pharm 49(5):425–431

    Article  PubMed  PubMed Central  Google Scholar 

  10. Perazella MA (2012) Onco-nephrology: renal toxicities of chemotherapeutic agents. Clin J Am Soc Nephrol 7(10):1713–1721

    Article  CAS  PubMed  Google Scholar 

  11. Duffull SB, Robinson BA (1997) Clinical pharmacokinetics and dose optimisation of carboplatin. Clin Pharmacokinet 33(3):161–183

    Article  CAS  PubMed  Google Scholar 

  12. Sahni V, Choudhury D, Ahmed Z (2009) Chemotherapy-associated renal dysfunction. Nat Rev Nephrol 5(8):450–462

    Article  CAS  PubMed  Google Scholar 

  13. Pérez-Ramírez C, Cañadas-Garre M, Alnatsha A, Villar E, Delgado JR, Faus-Dáder MJ, Calleja-Hernández M (2016) Pharmacogenetic predictors of toxicity to platinum based chemotherapy in non-small cell lung cancer patients. Pharmacol Res 111:877–884

    Article  PubMed  CAS  Google Scholar 

  14. Bosó V, Herrero MJ, Santaballa A, Palomar L, Megias JE, de la Cueva H, Rojas L, Marqués MR, Poveda JL, Montalar J, Aliño SF (2014) SNPs and taxane toxicity in breast cancer patients. Pharmacogenomics 15(15):1845–1858

    Article  PubMed  CAS  Google Scholar 

  15. Gao B et al (2018) Genome-wide association study of paclitaxel and carboplatin disposition in women with epithelial ovarian cancer. Sci Rep 8(1):1–10

    Google Scholar 

  16. Lambrechts S et al (2015) Genetic variability in drug transport, metabolism or DNA repair affecting toxicity of chemotherapy in ovarian cancer. BMC Pharmacol Toxicol 16(1):1–13

    Article  CAS  Google Scholar 

  17. Suk R et al (2005) Polymorphisms in ERCC1 and grade 3 or 4 toxicity in non-small cell lung cancer patients. Clin Cancer Res 11(4):1534–1538

    Article  CAS  PubMed  Google Scholar 

  18. Beheshti F, Hassanian SM, Khazaei M, Hosseini M, ShahidSales S, Hasanzadeh M, Maftouh M, Ferns GA, Avan A (2018) Genetic variation in the DNA repair pathway as a potential determinant of response to platinum-based chemotherapy in breast cancer. J Cell Physiol 233(4):2752–2758

    Article  CAS  PubMed  Google Scholar 

  19. Bergmann TK, Brasch-Andersen C, Gréen H, Mirza MR, Skougaard K, Wihl J, Keldsen N, Damkier P, Peterson C, Vach W, Brøsen K (2012) Impact of ABCB1 variants on neutrophil depression: a pharmacogenomic study of paclitaxel in 92 women with ovarian cancer. Basic Clin Pharmacol Toxicol 110(2):199–204

    Article  CAS  PubMed  Google Scholar 

  20. Bergmann TK, Gréen H, Brasch-Andersen C, Mirza MR, Herrstedt J, Hølund B, du Bois A, Damkier P, Vach W, Brosen K, Peterson C (2011) Retrospective study of the impact of pharmacogenetic variants on paclitaxel toxicity and survival in patients with ovarian cancer. Eur J Clin Pharmacol 67(7):693–700

    Article  CAS  PubMed  Google Scholar 

  21. He YJ et al (2016) Carboplatin/taxane-induced gastrointestinal toxicity: a pharmacogenomics study on the SCOTROC1 trial. Pharm J 16(3):243–248

    CAS  Google Scholar 

  22. Hu L, Lv QL, Guo Y, Cheng L, Wu NY, Qin CZ, Zhou HH (2016) Genetic variation of CYP3A5 influences paclitaxel/carboplatin-induced toxicity in Chinese epithelial ovarian cancer patients. J Clin Pharmacol 56(3):349–354

    Article  CAS  PubMed  Google Scholar 

  23. Marcath LA, Kidwell KM, Robinson AC, Vangipuram K, Burness ML, Griggs JJ, Poznak CV, Schott AF, Hayes DF, Henry NL, Hertz DL (2019) Patients carrying CYP2C8*3 have shorter systemic paclitaxel exposure. Pharmacogenomics 20(2):95–104

    Article  CAS  PubMed  Google Scholar 

  24. Kim RB (2002) Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab Rev 34(1–2):47–54

    Article  CAS  PubMed  Google Scholar 

  25. McHugh PJ, Spanswick VJ, Hartley JA (2001) Repair of DNA interstrand crosslinks: molecular mechanisms and clinical relevance. Lancet Oncol 2(8):483–490

    Article  CAS  PubMed  Google Scholar 

  26. McGurk CJ, Cummings M, Köberle B, Hartley JA, Oliver RT, Masters JR (2006) Regulation of DNA repair gene expression in human cancer cell lines. J Cell Biochem 97(5):1121–1136

    Article  CAS  PubMed  Google Scholar 

  27. de Sousa GF, Wlodarczyk SR, Monteiro G (2014) Carboplatin: molecular mechanisms of action associated with chemoresistance. Braz J Pharm Sci 50(4):693–702

    Article  CAS  Google Scholar 

  28. Joerger M, Huitema ADR, Huizing MT, Willemse PHB, de Graeff A, Rosing H, Schellens JHM, Beijnen JH, Vermorken JB (2007) Safety and pharmacology of paclitaxel in patients with impaired liver function: a population pharmacokinetic-pharmacodynamic study. Br J Clin Pharmacol 64(5):622–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Calvert AH, Newell DR, Gumbrell LA, O'Reilly S, Burnell M, Boxall FE, Siddik ZH, Judson IR, Gore ME, Wiltshaw E (1989) Carboplatin dosage: prospective evaluation of a simple formula based on renal function. J Clin Oncol 7(11):1748–1756

    Article  CAS  PubMed  Google Scholar 

  30. Yu JJ, Lee KB, Mu C, Li Q, Abernathy TV, Bostick-Bruton F, Reed E (2000) Comparison of two human ovarian carcinoma cell lines (A2780/CP70 and MCAS) that are equally resistant to platinum, but differ at codon 118 of the ERCC1 gene. Int J Oncol 16(3):555–560

    CAS  PubMed  Google Scholar 

  31. Fung KL, Pan J, Ohnuma S, Lund PE, Pixley JN, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM (2014) MDR1 synonymous polymorphisms alter transporter specificity and protein stability in a stable epithelial monolayer. Cancer Res 74(2):598–608

    Article  CAS  PubMed  Google Scholar 

  32. Sissung TM, Baum CE, Kirkland CT, Gao R, Gardner ER, Figg WD (2010) Pharmacogenetics of membrane transporters: an update on current approaches. Mol Biotechnol 44(2):152–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bahadur N, Leathart JBS, Mutch E, Steimel-Crespi D, Dunn SA, Gilissen R, Houdt JV, Hendrickx J, Mannens G, Bohets H, Williams FM, Armstrong M, Crespi CL, Daly AK (2002) CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6α-hydroxylase activity in human liver microsomes. Biochem Pharmacol 64(11):1579–1589

    Article  CAS  PubMed  Google Scholar 

  34. Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K, Nuessler AC, Neuhaus P, Klattig J, Eiselt R, Koch I, Zibat A, Brockmöller J, Halpert JR, Zanger UM, Wojnowski L (2001) The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 11(9):773–779

    Article  CAS  PubMed  Google Scholar 

  35. Abal M, Andreu J, Barasoain I (2005) Taxanes: microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr Cancer Drug Targets 3(3):193–203

    Article  Google Scholar 

  36. Reedijk J (1987) The mechanism of action of platinum anti-tumor drugs H3N O — C CH2 H3N OC ’ CH2-. Pure Appl Chem 59(2)181–192

  37. Tanabe Y, Shimizu C, Hamada A, Hashimoto K, Ikeda K, Nishizawa D, Hasegawa J, Shimomura A, Ozaki Y, Tamura N, Yamamoto H, Yunokawa M, Yonemori K, Takano T, Kawabata H, Tamura K, Fujiwara Y (2017) Paclitaxel-induced sensory peripheral neuropathy is associated with an ABCB1 single nucleotide polymorphism and older age in Japanese. Cancer Chemother Pharmacol 79(6):1179–1186

    Article  CAS  PubMed  Google Scholar 

  38. Eckhoff L, Feddersen S, Knoop AS, Ewertz M, Bergmann TK (2015) Docetaxel-induced neuropathy: a pharmacogenetic case-control study of 150 women with early-stage breast cancer. Acta Oncol (Madr) 54(4):530–537

    Article  CAS  Google Scholar 

  39. Andrade RJ et al (2019) Drug-induced liver injury. Nat Rev Dis Prim 5(1):58

    Article  PubMed  Google Scholar 

  40. Field KM, Michael M (2008) Part II: liver function in oncology: towards safer chemotherapy use. Lancet Oncol 9(12):1181–1190

    Article  CAS  PubMed  Google Scholar 

  41. Egawa-Takata T, Ueda Y, Kuragaki C, Miyake T, Miyatake T, Fujita M, Yoshino K, Nakashima R, Okazawa M, Tsutsui T, Morishige KI, Kimura T, Yamasaki M, Nishizaki T, Nagamatsu M, Ito K, Asada M, Ogita K, Wakimoto A, Yamamoto T, Nishio Y, Enomoto T (2011) Chemotherapy for endometrial carcinoma (GOGO-EM1 study): TEC (paclitaxel, epirubicin, and carboplatin) is an effective remission-induction and adjuvant therapy. Cancer Chemother Pharmacol 68(6):1603–1610

    Article  CAS  PubMed  Google Scholar 

  42. Pignata S, Breda E, Scambia G, Pisano C, Zagonel V, Lorusso D, Greggi S, de Vivo R, Ferrandina G, Gallo C, Perrone F (2008) A phase II study of weekly carboplatin and paclitaxel as first-line treatment of elderly patients with advanced ovarian cancer. A Multicentre Italian Trial in Ovarian cancer (MITO-5) study. Crit Rev Oncol Hematol 66(3):229–236

    Article  PubMed  Google Scholar 

  43. Yang L, Guo J, Shen Y, Cai J, Xiong Z, Dong W, Min J, Wang Z (2015) Clinical efficacy and safety of paclitaxel plus carboplatin as neoadjuvant chemotherapy prior to radical hysterectomy and pelvic lymphadenectomy for stage IB 2 -IIB cervical cancer. Int J Clin Exp Med 8(8):13690–13698

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Du Bois A et al (2010) Phase III trial of carboplatin plus paclitaxel with or without gemcitabine in first-line treatment of epithelial ovarian cancer. J Clin Oncol 28(27):4162–4169

    Article  PubMed  CAS  Google Scholar 

  45. Garces Á et al (2013) Carboplatina e paclitaxel em primeira linha paliativa no tratamento de câncer de colo uterino avançado ou persistente recorrente: análise de uma série de casos do Instituto Nacional de Câncer do Brasil. Rev Bras Oncol Clín 9(31):18–24

    Google Scholar 

  46. Lindeman RD, Tobin J, Shock NW (1985) Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc 33(4):278–285

    Article  CAS  PubMed  Google Scholar 

  47. Reidy K, Kang HM, Hostetter T, Susztak K (2014) Molecular mechanisms of diabetic kidney disease. J Clin Invest 124(6):2333–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Single Nucleotide Polymorphism database (dbSNP). National Center for Biotechnology. [Online]. Available: https://www.ncbi.nlm.nih.gov/snp/. Accessed 23 July 2019

  49. Houtgraaf JH, Versmissen J, van der Giessen WJ (2006) A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc Revasc Med 7(3):165–172

    Article  PubMed  Google Scholar 

  50. Zazuli Z et al (2019) SLC22A2 and cisplatin nephrotoxicity in adult testicular cancer patients. pp 1–17. https://doi.org/10.3390/genes10050364

  51. Goekkurt E, al-Batran SE, Hartmann JT, Mogck U, Schuch G, Kramer M, Jaeger E, Bokemeyer C, Ehninger G, Stoehlmacher J (2009) Pharmacogenetic analyses of a phase III trial in metastatic gastroesophageal adenocarcinoma with fluorouracil and leucovorin plus either oxaliplatin or cisplatin: a study of the Arbeitsgemeinschaft Internistische Onkologie. J Clin Oncol 27(17):2863–2873

    Article  CAS  PubMed  Google Scholar 

  52. Chen S, Huo X, Lin Y, Ban H, Lin Y, Li W, Zhang B, Au WW, Xu X (2010) Association of MDR1 and ERCC1 polymorphisms with response and toxicity to cisplatin-based chemotherapy in non-small-cell lung cancer patients. Int J Hyg Environ Health 213(2):140–145

    Article  CAS  PubMed  Google Scholar 

  53. Khrunin AV, Moisseev A, Gorbunova V, Limborska S (2010) Genetic polymorphisms and the efficacy and toxicity of cisplatin-based chemotherapy in ovarian cancer patients. Pharm J 10(1):54–61

    CAS  Google Scholar 

  54. Figg WD, Chau CH, Madan RA, Gulley JL, Gao R, Sissung TM, Spencer S, Beatson M, Aragon-Ching J, Steinberg SM, Dahut WL (2013) Phase II study of satraplatin and prednisone in patients with metastatic castration-resistant prostate cancer: a pharmacogenetic assessment of outcome and toxicity. Clin Genitourin Cancer 11(3):229–237

    Article  PubMed  PubMed Central  Google Scholar 

  55. Liu HE et al (2014) Multiple analytical approaches demonstrate a complex relationship of genetic and nongenetic factors with cisplatin- and carboplatin-induced nephrotoxicity in lung cancer patients. Biomed Res Int. https://doi.org/10.1155/2014/937429

  56. Thiebaut F, Tsuruot T, Hamadat H, Gottesman MM, Pastan IRA (1987) Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Sci York 84(November):7735–7738

    CAS  Google Scholar 

  57. Sissung TM, Baum CE, Deeken J, Price DK, Aragon-Ching J, Steinberg SM, Dahut W, Sparreboom A, Figg WD (2008) ABCB1 genetic variation influences the toxicity and clinical outcome of patients with androgen-independent prostate cancer treated with docetaxel. Clin Cancer Res 14(14):4543–4549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334(2):115–124

    Article  PubMed  Google Scholar 

  59. Rabah SO (2010) Acute Taxol nephrotoxicity: histological and ultrastructural studies of mice kidney parenchyma. Saudi J Biol Sci 17(2):105–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB (2010) Mechanisms of cisplatin nephrotoxicity. Toxins (Basel) 2(11):2490–2518

    Article  CAS  Google Scholar 

  61. Vaishampayan U, Parchment RE, Jasti BR, Hussain M (1999) Taxanes: an overview of the pharmacokinetics and pharmacodynamics. Urology 54(6 SUPPL. 1):22–29

    Article  CAS  PubMed  Google Scholar 

  62. Stordal B et al (2012) Resistance to paclitaxel in a cisplatin-resistant ovarian cancer cell line is mediated by P-glycoprotein. PLoS One 7(7). https://doi.org/10.1371/journal.pone.0040717

  63. Cao S, Wang C, Ma H, Yin R, Zhu M, Shen W, Dai J, Shu Y, Xu L, Hu Z, Shen H (2015) Genome-wide Association Study on Platinum-induced Hepatotoxicity in Non-Small Cell Lung Cancer Patients. Scientific Reports 5.

  64. Qian C-Y, Zheng Y, Wang Y, Chen J, Liu J-Y, Zhou H-H, Yin J-Y, Liu Z-Q (2016) Associations of genetic polymorphisms of the transporters organic cation transporter 2 (OCT2), multidrug and toxin extrusion 1 (MATE1), and ATP-binding cassette subfamily C member 2 (ABCC2) with platinum-based chemotherapy response and toxicity in non-small cell lung cancer patients. Chin J Cancer Res 35.

Download references

Acknowledgments

We thank the patients who volunteered to participate in the study, the Instituto Nacional de Câncer, Research Coordination (Dr. Guilherme Suarez-Kurtz), Hospital do Câncer II, for the authorization and use of laboratory facilities, and the members of the groups of the Department of Pharmacology of EPM-Unifesp.

Funding

We thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp, São Paulo, Brazil) – Proc. 2013/09295-3 and Fundação Carlos Chagas Filho de Amparo à Pesquisa no Rio de Janeiro (FAPERJ, Rio de Janeiro, Brazil) – Proc. 26/010.002644/2014 and E-26/210.784/2015. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) Finance Code 001 (LC Costa-Junior is a recipient of a fellowship from CAPES, Brazil) by Programa de Pós-Graduação em Farmacologia (EPM-Unifesp).

Author information

Authors and Affiliations

Authors

Contributions

LCCJ: data curation, formal analysis, investigation, methodology, project administration, software, visualization, writing—original draft and review.

CLC: data curation, formal analysis, investigation, methodology, project administration, software, visualization, and writing review.

DRFA: formal analysis, investigation, methodology, software, visualization, writing—original draft and review.

RV-J and PCJLS: conceptualization, funding acquisition, methodology (selection and development); project administration; resources; supervision; validation; visualization; and writing (review and editing).

Corresponding authors

Correspondence to Rosane Vianna-Jorge or Paulo Caleb Júnior Lima Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical standards

The study protocol was approved by the Ethics Committees of Instituto Nacional de Câncer (20406413.6.0000.5274) and Escola Paulista de Medicina, Universidade Federal de São Paulo (84775518.3.0000.5505).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 86 kb)

ESM 2

(DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa Junior, L.C., de Castro, C.L., Freitas-Alves, D.R. et al. ABCB1 and ERCC1 gene polymorphisms are associated with nephro- and hepatotoxicity to carboplatin/paclitaxel-based chemotherapy in patients with gynecologic cancers. Eur J Clin Pharmacol 76, 1401–1408 (2020). https://doi.org/10.1007/s00228-020-02934-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-020-02934-9

Keywords

Navigation