Skip to main content

Advertisement

Log in

Influence of preadipocyte-conditioned medium on the proliferation and invasive potential of breast cancer cell lines in vitro

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Autologous transplantation of adipose tissue into the breast is commonly performed in clinical practice, but its oncological safety has not been established.

Methods

We conducted an in vitro study to assess the influence of factors released by adipose-derived stem cells (ASCs), from multiple source tissues and harvested using different techniques, on proliferation and invasiveness of two breast cancer cell lines.

Results

Fat specimens of 66 donors (57 female, 9 male) were collected and 44 ASC cultures were established. ASC conditioning of the medium (CM) increased the proliferation of MCF-7 cells (178.4 ± 62.8%; P < 0.001), whereas MDA-MB321 proliferation was decreased (87.3 ± 15.3%; P = 0.032). We observed increased cell migration (174.0 ± 62.8%; P = 0.002), but not cell invasion (1.28 ± 0.51; P = 0.14) in MDA-MB231. Migration and invasion of MCF-7 cells were not affected by exposure to ASC-CM. For MCF-7 cell migration, lower BMI (< 25 kg/m2) was associated with increased migration, both in univariate (P = 0.015) and multivariate (P = 0.039) analyses. Regarding the cytokine secretome, proliferation of MCF-7 was positively correlated with levels of eotaxin 1 and insulin-like growth factor-binding protein 3 in the CM, and inversely correlated with levels of interleukin 1β and transforming growth factor β-3. In case of MDA-MB231, granulocyte colony-stimulating factor, angiogenin, eotaxin 1 and 3, neutrophil activating peptide 2, and neurotrophin-3 were positively correlated with proliferation.

Conclusions

We conclude that fat tissue transplantation increases proliferation and migration, but not invasion, of breast cancer cells. These findings are consistent with clinical data regarding the safety of autologous fat transplantation in breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ASC:

Adipose-derived stem cells

BMI:

Body mass index

CM:

Conditioned medium/media

FCS:

Fetal calf serum

PBS:

Phosphate-buffered saline

References

  1. Gutowski KA (2009) Current applications and safety of autologous fat grafts: a report of the ASPS fat graft task force. Plast Reconstr Surg 124(1):272–280. https://doi.org/10.1097/PRS.0b013e3181a09506

    Article  CAS  PubMed  Google Scholar 

  2. Fulton JE, Parastouk N (2008) Fat grafting. Facial Plast Surg Clin N Am 16(4):459. https://doi.org/10.1016/j.fsc.2008.09.003

    Article  Google Scholar 

  3. Bernard RW, Beran SJ (2003) Autologous fat graft in nipple reconstruction. Plast Reconstr Surg 112(4):964–968. https://doi.org/10.1097/01.PRS.0000076245.12249.BE

    Article  PubMed  Google Scholar 

  4. Missana MC, Laurent I, Barreau L et al (2007) Autologous fat transfer in reconstructive breast surgery: indications, technique and results. Eur J Surg Oncol 33(6):685–690. https://doi.org/10.1016/j.ejso.2006.12.002

    Article  CAS  PubMed  Google Scholar 

  5. Spear SL, Wilson HB, Lockwood MD (2005) Fat injection to correct contour deformities in the reconstructed breast. Plast Reconstr Surg 116(5):1300–1305

    Article  CAS  Google Scholar 

  6. Petit JY, Lohsiriwat V, Clough KB et al (2011) The oncologic outcome and immediate surgical complications of lipofilling in breast cancer patients: a multicenter study–Milan-Paris-Lyon experience of 646 lipofilling procedures. Plast Reconstr Surg 128(2):341–346. https://doi.org/10.1097/PRS.0b013e31821e713c

    Article  CAS  PubMed  Google Scholar 

  7. Rennekampff HO, Reimers K, Gabka CJ et al (2010) Current perspective and limitations of autologous fat transplantation–“consensus meeting” of the German Society of Plastic, Reconstructive and Aesthetic Surgeons at Hannover. Handchir Mikrochir Plast Chir 42(2):137–142. https://doi.org/10.1055/s-0030-1249672

    Article  PubMed  Google Scholar 

  8. Lohsiriwat V, Curigliano G, Rietjens M et al (2011) Autologous fat transplantation in patients with breast cancer: “silencing” or “fueling” cancer recurrence. Breast 20(4):351–357. https://doi.org/10.1016/j.breast.2011.01.003

    Article  PubMed  Google Scholar 

  9. Rietjens M, de Lorenzi F, Rossetto F et al (2011) Safety of fat grafting in secondary breast reconstruction after cancer. J Plast Reconstr Aesthet Surg 64(4):477–483. https://doi.org/10.1016/j.bjps.2010.06.024

    Article  CAS  PubMed  Google Scholar 

  10. Delay E, Garson S, Tousson G et al (2009) Fat injection to the breast: technique, results, and indications based on 880 procedures over 10 years. Aesthet Surg J 29(5):360–376. https://doi.org/10.1016/j.asj.2009.08.010

    Article  PubMed  Google Scholar 

  11. Petit JY, Botteri E, Lohsiriwat V et al (2011) Locoregional recurrence risk after lipofilling in breast cancer patients. Ann Oncol. https://doi.org/10.1093/annonc/mdr158

    Article  PubMed  Google Scholar 

  12. Manabe Y, Toda S, Miyazaki K et al (2003) Mature adipocytes, but not preadipocytes, promote the growth of breast carcinoma cells in collagen gel matrix culture through cancer-stromal cell interactions. J Pathol 201(2):221–228. https://doi.org/10.1002/path.1430

    Article  PubMed  Google Scholar 

  13. Dirat B, Bochet L, Dabek M et al (2011) Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res 71(7):2455–2465. https://doi.org/10.1158/0008-5472.CAN-10-3323

    Article  CAS  PubMed  Google Scholar 

  14. Ullmann Y, Shoshani O, Fodor A et al (2005) Searching for the favorable donor site for fat injection: in vivo study using the nude mice model. Dermatol Surg 31(10):1304–1307

    Article  CAS  Google Scholar 

  15. Coleman SR (2002) Hand rejuvenation with structural fat grafting. Plast Reconstr Surg 110(7):1731. https://doi.org/10.1097/01.PRS.0000033936.43357.08

    Article  PubMed  Google Scholar 

  16. Guyuron B, Majzoub RK (2007) Facial augmentation with core fat graft: a preliminary report. Plast Reconstr Surg 120(1):295–302. https://doi.org/10.1097/01.prs.0000264399.40701.71

    Article  CAS  PubMed  Google Scholar 

  17. Sell H, Dietze-Schroeder D, Kaiser U et al (2006) Monocyte chemotactic protein-1 is a potential player in the negative cross-talk between adipose tissue and skeletal muscle. Endocrinology 147(5):2458–2467. https://doi.org/10.1210/en.2005-0969

    Article  CAS  PubMed  Google Scholar 

  18. Neuhoff S, Moers J, Rieks M et al (2007) Proliferation, differentiation, and cytokine secretion of human umbilical cord blood-derived mononuclear cells in vitro. Exp Hematol 35(7):1119–1131. https://doi.org/10.1016/j.exphem.2007.03.019

    Article  CAS  PubMed  Google Scholar 

  19. Rezniczek GA, Kumbruch S, Scheich J et al (2016) Factors influencing yield and neuronal differentiation of mesenchymal stem cells from umbilical cord blood and matrix. Regen Med 11(5):465–474. https://doi.org/10.2217/rme-2016-0023

    Article  CAS  PubMed  Google Scholar 

  20. Strong AL, Strong TA, Rhodes LV et al (2013) Obesity associated alterations in the biology of adipose stem cells mediate enhanced tumorigenesis by estrogen dependent pathways. Breast Cancer Res 15(5):R102. https://doi.org/10.1186/bcr3569

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rowan BG, Gimble JM, Sheng M et al (2014) Human adipose tissue-derived stromal/stem cells promote migration and early metastasis of triple negative breast cancer xenografts. PLoS One 9(2):e89595. https://doi.org/10.1371/journal.pone.0089595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Strong AL, Ohlstein JF, Biagas BA et al (2015) Leptin produced by obese adipose stromal/stem cells enhances proliferation and metastasis of estrogen receptor positive breast cancers. Breast Cancer Res 17:112. https://doi.org/10.1186/s13058-015-0622-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chia CT, Theodorou SJ (2012) 1,000 consecutive cases of laser-assisted liposuction and suction-assisted lipectomy managed with local anesthesia. Aesthet Plast Surg 36(4):795–802. https://doi.org/10.1007/s00266-012-9885-2

    Article  Google Scholar 

  24. Santosa KB, Qi J, Kim HM et al (2016) Effect of patient age on outcomes in breast reconstruction. Results from a multicenter prospective study. J Am Coll Surg 223(6):745–754. https://doi.org/10.1016/j.jamcollsurg.2016.09.003

    Article  PubMed  PubMed Central  Google Scholar 

  25. Buschmann J, Gao S, Härter L et al (2013) Yield and proliferation rate of adipose-derived stromal cells as a function of age, body mass index and harvest site-increasing the yield by use of adherent and supernatant fractions? Cytotherapy 15(9):1098–1105. https://doi.org/10.1016/j.jcyt.2013.04.009

    Article  CAS  PubMed  Google Scholar 

  26. de Girolamo L, Lopa S, Arrigoni E et al (2009) Human adipose-derived stem cells isolated from young and elderly women. Their differentiation potential and scaffold interaction during in vitro osteoblastic differentiation. Cytotherapy 11(6):793–803. https://doi.org/10.3109/14653240903079393

    Article  CAS  PubMed  Google Scholar 

  27. von Heimburg D, Hemmrich K, Haydarlioglu S et al (2004) Comparison of viable cell yield from excised versus aspirated adipose tissue. Cells Tissues Organs 178(2):87–92. https://doi.org/10.1159/000081719

    Article  Google Scholar 

  28. Torio-Padron N, Huotari AM, Eisenhardt SU et al (2010) Comparison of pre-adipocyte yield, growth and differentiation characteristics from excised versus aspirated adipose tissue. Cells Tissues Organs 191(5):365–371. https://doi.org/10.1159/000276594

    Article  CAS  PubMed  Google Scholar 

  29. Strong AL, Cederna PS, Rubin JP et al (2015) The current state of fat grafting. A review of harvesting, processing, and injection techniques. Plast Reconstr Surg 136(4):897–912. https://doi.org/10.1097/PRS.0000000000001590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koellensperger E, Bonnert L-C, Zoernig I et al (2017) The impact of human adipose tissue-derived stem cells on breast cancer cells. Implications for cell-assisted lipotransfers in breast reconstruction. Stem Cell Res Ther 8(1):121. https://doi.org/10.1186/s13287-017-0579-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walter M, Liang S, Ghosh S et al (2009) Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene 28(30):2745–2755. https://doi.org/10.1038/onc.2009.130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Senst C, Nazari-Shafti T, Kruger S et al (2013) Prospective dual role of mesenchymal stem cells in breast tumor microenvironment. Breast Cancer Res Treat 137(1):69–79. https://doi.org/10.1007/s10549-012-2321-0

    Article  CAS  PubMed  Google Scholar 

  33. Aldinucci D, Colombatti A (2014) The inflammatory chemokine CCL5 and cancer progression. Mediat Inflamm 2014:292376. https://doi.org/10.1155/2014/292376

    Article  CAS  Google Scholar 

  34. D‘Esposito V, Liguoro D, Ambrosio MR et al (2016) Adipose microenvironment promotes triple negative breast cancer cell invasiveness and dissemination by producing CCL5. Oncotarget 7(17):24495–24509. https://doi.org/10.18632/oncotarget.8336

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317. https://doi.org/10.1080/14653240600855905

    Article  CAS  PubMed  Google Scholar 

  36. Burdall SE, Hanby AM, Lansdown MRJ et al (2003) Breast cancer cell lines. Friend or foe? Breast Cancer Res 5(2):89–95

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Medical Faculty of the Ruhr-Universität Bochum (FoRUM F772N-2013).

Author information

Authors and Affiliations

Authors

Contributions

A. Jablonka: data collection, data analysis, manuscript writing. J. Scheich: data collection and management. F. Jacobsen: protocol development, manuscript editing. T. Hirsch: project development, manuscript editing. M. Hagouan: protocol development, data collection, manuscript editing. M. Lehnhardt: project development, manuscript editing. C.B. Tempfer: project development, manuscript writing. G.A. Rezniczek: project development, data analysis and management, manuscript writing.

Corresponding author

Correspondence to Günther A. Rezniczek.

Ethics declarations

Data availability

Original data generated and analyzed during this study are available from the corresponding author on reasonable request.

Ethical approval

Collection of patient materials for this study was approved by the local ethics committees. All donors gave written informed consent. All experiments complied with German law.

Conflict of interest

All authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

404_2018_4910_MOESM1_ESM.pdf

Supplementary Fig. S1 (a and b) Heat maps of cytokine levels in a selection of 8 adipose-derived stem cell-conditioned media (#s 27, 28, 31, 36, 37, 39, 40, and 44) arranged by their effect on MCF-7 (a) and MDA-MB231 (b) cells (increasing proliferation, migration, and invasion; see Figs. 1 and 2). Proliferation, migration, and invasion values were correlated with cytokine levels (Spearman rank-order correlation). Arrows mark correlations with P < 0.1. *, P < 0.05; **, P < 0.01; ***, P < 0.001. Color range: green (≤ 0.25-fold row mean)—black (row mean)—red (≥ 4-fold row mean). (c) Bar graph showing the normalized results of the densitometric analyses (“signal”, arbitrary units) of the cytokine arrays (see Materials and Methods for details) (PDF 971 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jablonka, A., Scheich, J., Jacobsen, F. et al. Influence of preadipocyte-conditioned medium on the proliferation and invasive potential of breast cancer cell lines in vitro. Arch Gynecol Obstet 298, 1159–1171 (2018). https://doi.org/10.1007/s00404-018-4910-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-018-4910-6

Keywords

Navigation