Skip to main content

Association between zinc level and the risk of preeclampsia: a meta-analysis

Abstract

Background

Epidemiological studies evaluating the association between zinc level and the risk of preeclampsia have produced inconsistent results. We therefore conducted a meta-analysis to summarize the evidence for them.

Methods

Pertinent studies were identified by a search in PubMed and Web of Knowledge up to April 2015. Standardized mean difference (SMD) was performed to combine the results. Random-effect model was used. Publication bias was estimated using Egger’s regression asymmetry test.

Results

Thirteen articles (11 case–control studies and 2 cross-sectional studies) involving 445 preeclampsia cases and 568 healthy controls were included in this meta-analysis. Our pooled results suggested that preeclampsia patients had a lower zinc level as compared with healthy, pregnant controls (summary SMD = −0.61, 95 % CI = −0.74, −0.48, I 2 = 88.5 %). The association was also significant in Asia (SMD = −0.73, 95 % CI = −0.88, −0.58), but not in Europe. No publication biases were found.

Conclusions

Our analysis indicated that zinc level in preeclampsia patients was significantly lower than that of healthy, pregnant women, especially among the Asian population.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Walker JJ (2000) Pre-eclampsia. Lancet 356:1260–1265

    PubMed  CAS  Article  Google Scholar 

  2. Sibai BM, Stella CL (2009) Diagnosis and management of atypical preeclampsia-eclampsia. Am J Obstet Gynecol 200(481):e481–e487

    Google Scholar 

  3. Ghulmiyyah L, Sibai B (2012) Maternal mortality from preeclampsia/eclampsia. Semin Perinatol 36:56–59

    PubMed  Article  Google Scholar 

  4. Kumru S, Aydin S, Simsek M, Sahin K, Yaman M, Ay G (2003) Comparison of serum copper, zinc, calcium, and magnesium levels in preeclamptic and healthy pregnant women. Biol Trace Elem Res 94:105–112

    PubMed  CAS  Article  Google Scholar 

  5. Kalinderis M, Papanikolaou A, Kalinderi K, Vyzantiadis TA, Ioakimidou A, Tarlatzis BC (2015) Serum levels of leptin and IP-10 in preeclampsia compared to controls. Arch Gynecol Obstet 292:343–347

    PubMed  CAS  Article  Google Scholar 

  6. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    PubMed  CAS  Article  Google Scholar 

  7. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558

    PubMed  Article  Google Scholar 

  8. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    PubMed  PubMed Central  Article  Google Scholar 

  9. Higgins JP, Thompson SG (2004) Controlling the risk of spurious findings from meta-regression. Stat Med 23:1663–1682

    PubMed  Article  Google Scholar 

  10. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  11. Tobias A (1999) Assessing the influence of a single study in the meta-analysis estimate. Stata Tech Bull 47:15–17

    Google Scholar 

  12. Adam B, Malatyalioglu E, Alvur M, Talu C (2001) Magnesium, zinc and iron levels in pre-eclampsia. J Matern Fetal Med 10:246–250

    PubMed  CAS  Article  Google Scholar 

  13. Ahsan T, Banu S, Nahar Q, Ahsan M, Khan MN, Islam SN (2013) Serum trace elements levels in preeclampsia and eclampsia: correlation with the pregnancy disorder. Biol Trace Elem Res 152:327–332

    PubMed  CAS  Article  Google Scholar 

  14. Araujo Brito J, do Nascimento Marreiro D, Moita Neto JM, Michelle Costa e Silva D, de Goncalves Sousa Almondes K, Valadares Neto Jde D, do Nascimento Nogueira N (2013) Enzyme activity of superoxide dismutase and zincemia in women with preeclampsia. Nutr Hosp 28:486–490

    PubMed  Google Scholar 

  15. Atamer Y, Kocyigit Y, Yokus B, Atamer A, Erden AC (2005) Lipid peroxidation, antioxidant defense, status of trace metals and leptin levels in preeclampsia. Eur J Obstet Gynecol Reprod Biol 119:60–66

    PubMed  CAS  Article  Google Scholar 

  16. Borella P, Szilagyi A, Than G, Csaba I, Giardino A, Facchinetti F (1990) Maternal plasma concentrations of magnesium, calcium, zinc and copper in normal and pathological pregnancies. Sci Total Environ 99:67–76

    PubMed  CAS  Article  Google Scholar 

  17. Fenzl V, Flegar-Mestric Z, Perkov S, Andrisic L, Tatzber F, Zarkovic N, Duic Z (2013) Trace elements and oxidative stress in hypertensive disorders of pregnancy. Arch Gynecol Obstet 287:19–24

    PubMed  CAS  Article  Google Scholar 

  18. Farzin L, Sajadi F (2012) Comparison of serum trace element levels in patients with or without pre-eclampsia. J Res Med Sci 17:938–941

    PubMed  PubMed Central  Google Scholar 

  19. Gupta S, Jain NP, Avasthi K, Wander GS (2014) Plasma and erythrocyte zinc in pre-eclampsia and its correlation with foetal outcome. J Assoc Physicians India 62:306–310

    PubMed  Google Scholar 

  20. Ilhan N, Ilhan N, Simsek M (2002) The changes of trace elements, malondialdehyde levels and superoxide dismutase activities in pregnancy with or without preeclampsia. Clin Biochem 35:393–397

    PubMed  CAS  Article  Google Scholar 

  21. Jain S, Sharma P, Kulshreshtha S, Mohan G, Singh S (2010) The role of calcium, magnesium, and zinc in pre-eclampsia. Biol Trace Elem Res 133:162–170

    PubMed  CAS  Article  Google Scholar 

  22. Kolusari A, Kurdoglu M, Yildizhan R, Adali E, Edirne T, Cebi A, Demir H, Yoruk IH (2008) Catalase activity, serum trace element and heavy metal concentrations, and vitamin A, D and E levels in pre-eclampsia. J Int Med Res 36:1335–1341

    PubMed  CAS  Article  Google Scholar 

  23. Rafeeinia A, Tabandeh A, Khajeniazi S, Marjani AJ (2014) Serum copper, zinc and lipid peroxidation in pregnant women with preeclampsia in gorgan. Open Biochem J 8:83–88

    PubMed  PubMed Central  Article  Google Scholar 

  24. Sarwar MS, Ahmed S, Ullah MS, Kabir H, Rahman GK, Hasnat A, Islam MS (2013) Comparative study of serum zinc, copper, manganese, and iron in preeclamptic pregnant women. Biol Trace Elem Res 154:14–20

    PubMed  CAS  Article  Google Scholar 

  25. English FA, Kenny LC, McCarthy FP (2015) Risk factors and effective management of preeclampsia. Integr Blood Press Control 8:7–12

    PubMed  PubMed Central  Google Scholar 

  26. Huppertz B, Kingdom JC (2004) Apoptosis in the trophoblast–role of apoptosis in placental morphogenesis. J Soc Gynecol Investig 11:353–362

    PubMed  CAS  Article  Google Scholar 

  27. Raijmakers MT, Dechend R, Poston L (2004) Oxidative stress and preeclampsia: rationale for antioxidant clinical trials. Hypertension 44:374–380

    PubMed  CAS  Article  Google Scholar 

  28. Redman CW, Sargent IL (2005) Latest advances in understanding preeclampsia. Science 308:1592–1594

    PubMed  CAS  Article  Google Scholar 

  29. Sun JY, Jing MY, Weng XY, Fu LJ, Xu ZR, Zi NT, Wang JF (2005) Effects of dietary zinc levels on the activities of enzymes, weights of organs, and the concentrations of zinc and copper in growing rats. Biol Trace Elem Res 107:153–165

    PubMed  CAS  Article  Google Scholar 

  30. Munafo MR, Flint J (2004) Meta-analysis of genetic association studies. Trends Genet 20:439–444

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Chen.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Zhang, L., Chen, X. et al. Association between zinc level and the risk of preeclampsia: a meta-analysis. Arch Gynecol Obstet 293, 377–382 (2016). https://doi.org/10.1007/s00404-015-3883-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-015-3883-y

Keywords

  • Zinc level
  • Preeclampsia
  • Meta-analysis