Skip to main content

Advertisement

Log in

The role of thymic stromal lymphopoietin in cutaneous disorders

  • Review
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Thymic Stromal Lymphopoietin (TSLP) is an important cytokine that invokes early immune responses. TSLP, an IL-7-like cytokine encoded by the TSLP gene, activates JAK1 and JAK2 signaling pathways, stimulating dendritic cells to induce inflammatory Th2 cells. This cytokine is associated with pruritus in various cutaneous disorders, particularly atopic dermatitis. Varying levels of the cytokine TSLP have been demonstrated in studies of different cutaneous disorders. Pharmacological treatment targeting TSLP has been explored recently, particularly in the realm of atopic dermatitis.

This review explores the relation of TSLP to cutaneous diseases, highlighting its potential as a biomarker for monitoring disease progression in discoid lupus erythematosus (DLE). The pharmacological therapy involving TSLP is discussed, along with the potential role of TSLP promotion in the treatment of alopecia areata. This overview examines the background, structure, and functions of TSLP, with a focus on its association with cutaneous disorders and a special focus on the impact of the atopic march.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Ray RJ, Furlonger C, Williams DE, Paige CJ (1996) Characterization of thymic stromal-derived lymphopoietin (TSLP) in murine B cell development in vitro. Eur J Immunol 26(1):10–16. https://doi.org/10.1002/EJI.1830260103

    Article  CAS  PubMed  Google Scholar 

  2. Soumelis V, Reche PA, Kanzler H et al (2002) Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol 3(7):673–680. https://doi.org/10.1038/NI805

    Article  CAS  PubMed  Google Scholar 

  3. Ebina-Shibuya R, Leonard WJ (2023) Role of thymic stromal lymphopoietin in allergy and beyond. Nat Rev Immunol 23(1):24–37. https://doi.org/10.1038/s41577-022-00735-y

    Article  CAS  PubMed  Google Scholar 

  4. Kobayashi T, Voisin B, Kim DY et al (2019) Homeostatic control of sebaceous glands by innate lymphoid cells regulates commensal Bacteria equilibrium. Cell 176(5):982–997e16. https://doi.org/10.1016/J.CELL.2018.12.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Verstraete K, Peelman F, Braun H et al (2017) Structure and antagonism of the receptor complex mediated by human TSLP in allergy and asthma. Nat Commun 8. https://doi.org/10.1038/NCOMMS14937

  6. Rochman Y, Kashyap M, Robinson GW et al (2010) Thymic stromal lymphopoietin-mediated STAT5 phosphorylation via kinases JAK1 and JAK2 reveals a key difference from IL-7-induced signaling. Proc Natl Acad Sci U S A 107(45):19455–19460. https://doi.org/10.1073/PNAS.1008271107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ito T, Wang YH, Duramad O et al (2005) TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med 202(9):1213–1223. https://doi.org/10.1084/JEM.20051135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Flagnik M, Singh N, Holland S (2022) Paul’s Fundamental Immunology, 8th edn. Lippincott Williams & Wilkins

  9. Harada M, Hirota T, Jodo AI et al (2009) Functional analysis of the thymic stromal lymphopoietin variants in human bronchial epithelial cells. Am J Respir Cell Mol Biol 40(3):368–374. https://doi.org/10.1165/RCMB.2008-0041OC

    Article  CAS  PubMed  Google Scholar 

  10. Bjerkan L, Schreurs O, Engen SA et al (2015) The short form of TSLP is constitutively translated in human keratinocytes and has characteristics of an antimicrobial peptide. Mucosal Immunol 8(1):49–56. https://doi.org/10.1038/MI.2014.41

    Article  CAS  PubMed  Google Scholar 

  11. TSLP thymic stromal lymphopoietin [Homo sapiens (human)] - Gene - NCBI. NCBI. Published July 31, 2023. Accessed August 1 (2023) https://www.ncbi.nlm.nih.gov/gene/85480#gene-expression

  12. Shannon JL, Corcoran DL, Murray JC, Ziegler SF, MacLeod AS, Zhang JY (2022) Thymic stromal lymphopoietin controls hair growth. Stem Cell Rep 17(3):649–663. https://doi.org/10.1016/j.stemcr.2022.01.017

    Article  CAS  Google Scholar 

  13. Han H, Roan F, Ziegler SF (2017) The atopic march: current insights into skin barrier dysfunction and epithelial cell-derived cytokines. Immunol Rev 278(1):116–130. https://doi.org/10.1111/IMR.12546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li M (2014) Current evidence of epidermal barrier dysfunction and thymic stromal lymphopoietin in the atopic march. Eur Respir Rev 23(133):292–298. https://doi.org/10.1183/09059180.00004314

    Article  PubMed  PubMed Central  Google Scholar 

  15. Atopic March Defined | AAAAI. American Academy of Allergy, Asthma & Immunology. Accessed August 1 (2023) https://www.aaaai.org/tools-for-the-public/allergy,-asthma-immunology-glossary/atopic-march-defined

  16. Tsuge M, Ikeda M, Matsumoto N, Yorifuji T, Tsukahara H (2021) Current insights into atopic March. Child (Basel) 8(11). https://doi.org/10.3390/CHILDREN8111067

  17. Leyva-Castillo JM, Hener P, Jiang H, Li M (2013) TSLP produced by keratinocytes promotes allergen sensitization through skin and thereby triggers atopic march in mice. J Invest Dermatol 133(1):154–163. https://doi.org/10.1038/JID.2012.239

    Article  CAS  PubMed  Google Scholar 

  18. Sutaria N, Adawi W, Goldberg R, Roh YS, Choi J, Kwatra SG, Itch (2022) Pathogenesis and treatment. J Am Acad Dermatol 86(1):17–34. https://doi.org/10.1016/J.JAAD.2021.07.078

    Article  CAS  PubMed  Google Scholar 

  19. Green D, Dong X (2016) The cell biology of acute itch. J Cell Biol 213(2):155–161. https://doi.org/10.1083/JCB.201603042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cevikbas F, Lerner EA (2020) Physiology and pathophysiology of itch. Physiol Rev 100(3):945–982. https://doi.org/10.1152/PHYSREV.00017.2019

    Article  PubMed  Google Scholar 

  21. Blauvelt A, Chiricozzi A (2018) The immunologic role of IL-17 in Psoriasis and Psoriatic Arthritis Pathogenesis. Clin Rev Allergy Immunol 55(3):379–390. https://doi.org/10.1007/S12016-018-8702-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li SZ, Jin XX, Shan Y, Jin HZ, Zuo YG (2022) Expression of Thymic Stromal Lymphopoietin in Immune-related dermatoses. Mediators Inflamm 2022. https://doi.org/10.1155/2022/9242383

  23. Chong BF, Song J, Olsen NJ (2012) Determining risk factors for developing systemic lupus erythematosus in patients with discoid lupus erythematosus. Br J Dermatol 166(1):29–35. https://doi.org/10.1111/J.1365-2133.2011.10610.X

    Article  CAS  PubMed  Google Scholar 

  24. Hoy SM, Tezepelumab (2022) First approval. Drugs 82(4):461–468. https://doi.org/10.1007/S40265-022-01679-2

    Article  CAS  PubMed  Google Scholar 

  25. Simpson EL, Parnes JR, She D et al (2019) Tezepelumab, an anti-thymic stromal lymphopoietin monoclonal antibody, in the treatment of moderate to severe atopic dermatitis: a randomized phase 2a clinical trial. J Am Acad Dermatol 80(4):1013–1021. https://doi.org/10.1016/J.JAAD.2018.11.059

    Article  CAS  PubMed  Google Scholar 

  26. Blauvelt A, Guttman-Yassky E, Paller AS et al (2022) Long-term efficacy and safety of Dupilumab in adolescents with moderate-to-severe atopic dermatitis: results through Week 52 from a phase III open-label extension Trial (LIBERTY AD PED-OLE). Am J Clin Dermatol 23(3):365–383. https://doi.org/10.1007/S40257-022-00683-2

    Article  PubMed  PubMed Central  Google Scholar 

  27. Blauvelt A, de Bruin-Weller M, Simpson EL, Chen Z, Ardeleanu M, Rossi AB (2022) Consistency of response to Dupilumab in adults with moderate-to-severe atopic Dermatitis over 1 year. Dermatol Ther (Heidelb) 12(1):9–13. https://doi.org/10.1007/S13555-021-00657-Y

    Article  PubMed  Google Scholar 

  28. Trüeb RM, Dias MFRG (2018) Alopecia Areata: a Comprehensive Review of Pathogenesis and Management. Clin Rev Allergy Immunol 54(1):68–87. https://doi.org/10.1007/S12016-017-8620-9

    Article  PubMed  Google Scholar 

  29. Gong Y, Luo L, Li L et al (2021) Diphenylcyclopropenone plays an effective therapeutic role by up-regulating the TSLP/OX40L/IL-13 pathway in severe Alopecia Areata. Exp Dermatol 30(2):278–283. https://doi.org/10.1111/EXD.14254

    Article  CAS  PubMed  Google Scholar 

  30. Hill ND, Bunata K, Hebert AA (2015) Treatment of Alopecia Areata with squaric acid dibutylester. Clin Dermatol 33(3):300–304. https://doi.org/10.1016/J.CLINDERMATOL.2014.12.001

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

A.J.J and A.A.H contributed to the idea conception for the review article. Literature search and material preparation were performed by A.J.J and M.R. Figures 1 and 2 were prepared by M.R. The first draft of the manuscript was written by A.J.J and M.R. and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Adelaide A. Hebert.

Ethics declarations

Conflict of interest

None.

IRB approval status

N/A.

Patient consent

N/A.

Reprint requests

N/A.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, A.J., Rivera, M. & Hebert, A.A. The role of thymic stromal lymphopoietin in cutaneous disorders. Arch Dermatol Res 316, 123 (2024). https://doi.org/10.1007/s00403-024-02866-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00403-024-02866-9

Keywords

Navigation