Skip to main content

Advertisement

Log in

Preparation and evaluation of chitosan skin patches containing mesoporous silica nanoparticles loaded by doxycycline on skin wound healing

  • ORIGINAL PAPER
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

This study aims to prepare and evaluate a skin patch containing mesoporous silica nanoparticles with doxycycline for skin wound healing in a rat model. For this purpose, 84 female rats were randomly placed in four equal groups: (A) Control group with only skin defects and no therapeutic intervention; (B) Chitosan group in which a chitosan skin patch without loading any drug was placed on their skin defect; (C); The ChMesN group had a chitosan skin patch containing drug-free mesoporous silica nanoparticles; (D) ChMesND group had a skin patch loaded with doxycycline loaded with mesoporous silica nanoparticles on their skin defect. The histological results showed that on the 3rd day of the study, collagen fiber orientation was significantly higher in the ChMesND group than in the other groups. On the 7th day of the study, neovascularization, and inflammation in the ChMesND group were significantly higher and lower than in the other groups, respectively. On day 21, the most re-epithelialization was observed in the ChMesND group. It was found that on day 7, the wound area in the ChMesND group was significantly less than in other groups. On the 21st day of the study, the minimal experimental wound area was related to chitosan and ChMesND groups. Although chitosan has anti-inflammatory effects, its combination with doxycycline with several beneficial biological effects can have significant therapeutic effects with chitosan. Hence, it can be concluded that chitosan skin patch containing doxycycline can be suitable dressings for managing and accelerating the healing of skin wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

The data that support the findings of current study are available from the corresponding author upon reasonable request.

References

  1. Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923. https://doi.org/10.1002/jps.21210

    Article  CAS  PubMed  Google Scholar 

  2. Sugibayashi K, Morimoto Y (1994) Polymers for transdermal drug delivery systems. J Control Release 29:177–185. https://doi.org/10.1016/0168-3659(94)90134-1

    Article  CAS  Google Scholar 

  3. Hirano S (1996) Chitin biotechnology applications. Biotechnol Annu Rev 2:237–258. https://doi.org/10.1016/S1387-2656(08)70012-7

    Article  CAS  PubMed  Google Scholar 

  4. Thacharodi D, Rao KP (1995) Development and in vitro evaluation of chitosan-based transdermal drug delivery systems for the controlled delivery of propranolol hydrochloride. Biomaterials 16(2):145–148. https://doi.org/10.1016/0142-9612(95)98278-M

    Article  CAS  PubMed  Google Scholar 

  5. Van der Lubben I, Verhoef J, Van Aelst A, Borchard G, Junginger H (2001) Chitosan microparticles for oral vaccination: preparation, characterization and preliminary in vivo uptake studies in murine Peyer’s patches. Biomaterials 22(7):687–694. https://doi.org/10.1016/S0142-9612(00)00231-3

    Article  PubMed  Google Scholar 

  6. Genta I, Perugini P, Pavanetto F (1998) Different molecular weight chitosan microspheres: influence on drug loading and drug release. Drug Dev Ind Pharm 24(8):779–784. https://doi.org/10.3109/03639049809082726

    Article  CAS  PubMed  Google Scholar 

  7. Ohya Y, Cai R, Nishizawa H, Hara K, Ouchi T (2000) Preparation of PEG-grafted chitosan nanoparticles as peptide drug carriers. STP Pharma Sci 10(1):77–82

    CAS  Google Scholar 

  8. Kristl J, Šmid-Korbar J, Štruc E, Schara M, Rupprecht H. Hydrocolloids and gels of chitosan as drug carriers. Int J Pharm 99(1):13–19. https://doi.org/10.1016/0378-5173(93)90317-9

  9. Rocha A, Dantas T, Fonseca J, Pereira M (2002) Permeation of drugs in chitosan membranes. J Appl Polym Sci 84(1):44–49. https://doi.org/10.1002/app.10185

    Article  CAS  Google Scholar 

  10. Wang Y, Zhao Q, Hu Y, Sun L, Bai L, Jiang T et al (2013) Ordered nanoporous silica as carriers for improved delivery of water insoluble drugs: a comparative study between three dimensional and two dimensional macroporous silica. Int J Nanomed 8:4015. https://doi.org/10.2147/IJN.S52605

    Article  CAS  Google Scholar 

  11. Kilpeläinen M, Riikonen J, Vlasova M, Huotari A, Lehto V, Salonen J et al (2009) In vivo delivery of a peptide, ghrelin antagonist, with mesoporous silicon microparticles. J Control Release 137(2):166–170. https://doi.org/10.1016/j.jconrel.2009.03.017

    Article  CAS  PubMed  Google Scholar 

  12. Slowing II, Trewyn BG, Giri S, Lin VY (2007) Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater 17(8):1225–1236. https://doi.org/10.1002/adfm.200601191

    Article  CAS  Google Scholar 

  13. Giri S, Trewyn BG, Lin VS (2007) Mesoporous silica nanomaterial-based biotechnological and biomedical delivery systems. Nanomed J 2(1):99–111. https://doi.org/10.2217/17435889.2.1.99

    Article  CAS  Google Scholar 

  14. He Q, Zhang J, Shi J, Zhu Z, Zhang L, Bu W et al (2010) The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials 31(6):1085–1092. https://doi.org/10.1016/j.biomaterials.2009.10.046

    Article  CAS  PubMed  Google Scholar 

  15. Slowing II, Vivero-Escoto JL, Wu C-W, Lin VS-Y (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288. https://doi.org/10.1016/j.addr.2008.03.012

    Article  CAS  PubMed  Google Scholar 

  16. Yi Q, Zou W-j (2019) The wound healing effect of doxycycline after corneal alkali burn in rats. J Ophthalmol. https://doi.org/10.1155/2019/5168652

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cui S, Sun X, Li K, Gou D, Zhou Y, Hu J et al (2019) Polylactide nanofibers delivering doxycycline for chronic wound treatment. Mater Sci Eng C 104:109745. https://doi.org/10.1016/j.msec.2019.109745

    Article  CAS  Google Scholar 

  18. Ramírez-Agudelo R, Scheuermann K, Gala-García A, Monteiro APF, Pinzón-García AD, Cortés ME et al (2018) Hybrid nanofibers based on poly-caprolactone/gelatin/hydroxyapatite nanoparticles-loaded Doxycycline: Effective anti-tumoral and antibacterial activity. Mater Sci Eng C 83:25–34. https://doi.org/10.1016/j.msec.2017.08.012

    Article  CAS  Google Scholar 

  19. Javdani M, Barzegar A, Khosravian P, Hashemnia M (2022) Evaluation of inflammatory response due to use of controlled release drug delivery system of chitosan hydrogel loaded with buprenorphine and ketorolac in rat with experimental proximal tibial epiphysis defect. J Invest Surg 35(5):996–1011. https://doi.org/10.1080/08941939.2021.1989728

    Article  PubMed  Google Scholar 

  20. Dollimore D, Spooner P, Turner A (1976) The BET method of analysis of gas adsorption data and its relevance to the calculation of surface areas. Surf Technol 4(2):121–160. https://doi.org/10.1016/0376-4583(76)90024-8

    Article  CAS  Google Scholar 

  21. Chen L, Zhou X, He C (2019) Mesoporous silica nanoparticles for tissue-engineering applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11(6):e1573. https://doi.org/10.1002/wnan.1573

    Article  PubMed  Google Scholar 

  22. Lu F, Wu SH, Hung Y, Mou CY (2009) Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5(12):1408–1413. https://doi.org/10.1002/smll.200900005

    Article  CAS  PubMed  Google Scholar 

  23. Khan MA, Mujahid M (2019) A review on recent advances in chitosan based composite for hemostatic dressings. Int J Biol Macromol 124:138–147. https://doi.org/10.1016/j.ijbiomac.2018.11.045

    Article  CAS  PubMed  Google Scholar 

  24. Mohan K, Ganesan AR, Muralisankar T, Jayakumar R, Sathishkumar P, Uthayakumar V et al (2020) Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends Food Sci Technol 105:17–42. https://doi.org/10.1016/j.tifs.2020.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Feng P, Luo Y, Ke C, Qiu H, Wang W, Zhu Y et al (2021) Chitosan-based functional materials for skin wound repair: Mechanisms and applications. Front Bioeng Biotechnol 9:650598. https://doi.org/10.3389/fbioe.2021.650598

    Article  PubMed  PubMed Central  Google Scholar 

  26. Khorasani MT, Joorabloo A, Moghaddam A, Shamsi H, MansooriMoghadam Z (2018) Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application. Int J Biol Macromol 114:1203–1215. https://doi.org/10.1016/j.ijbiomac.2018.04.010

    Article  CAS  PubMed  Google Scholar 

  27. Zhang B, He J, Shi M, Liang Y, Guo B (2020) Injectable self-healing supramolecular hydrogels with conductivity and photo-thermal antibacterial activity to enhance complete skin regeneration. Chem Eng J 400:125994. https://doi.org/10.1016/j.cej.2020.125994

    Article  CAS  Google Scholar 

  28. Qu J, Zhao X, Liang Y, Zhang T, Ma PX, Guo B (2018) Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 183:185–199. https://doi.org/10.1016/j.biomaterials.2018.08.044

    Article  CAS  PubMed  Google Scholar 

  29. Mo C, Lu L, Liu D, Wei K (2020) Development of erianin-loaded dendritic mesoporous silica nanospheres with pro-apoptotic effects and enhanced topical delivery. J Nanobiotechnol 18(1):1–14. https://doi.org/10.1186/s12951-020-00608-3

    Article  CAS  Google Scholar 

  30. Bharti C, Nagaich U, Pal AK, Gulati N (2015) Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig 5(3):124. https://doi.org/10.4103/2230-973X.160844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gupta R, Rai B (2018) In-silico design of nanoparticles for transdermal drug delivery application. Nanoscale 10(10):4940–4951. https://doi.org/10.1039/C7NR07898F

    Article  CAS  PubMed  Google Scholar 

  32. Zhu M, Zhu Y, Zhang L, Shi J (2013) Preparation of chitosan/mesoporous silica nanoparticle composite hydrogels for sustained co-delivery of biomacromolecules and small chemical drugs. Sci Technol Adv Mater. https://doi.org/10.1088/1468-6996/14/4/045005

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rastegari E, Hsiao Y-J, Lai W-Y, Lai Y-H, Yang T-C, Chen S-J et al (2021) An update on mesoporous silica nanoparticle applications in nanomedicine. Pharmaceutics 13(7):1067. https://doi.org/10.3390/pharmaceutics13071067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA (2014) Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 14(3):181–194. https://doi.org/10.1038/nri3623

    Article  CAS  PubMed  Google Scholar 

  35. Tsang CK, Liu Y, Thomas J, Zhang Y, Zheng XS (2014) Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nat Commun 5(1):1–11. https://doi.org/10.1038/ncomms4446

    Article  CAS  Google Scholar 

  36. Wilcox JR, Covington DS, Paez N (2012) Doxycycline as a modulator of inflammation in chronic wounds. Wounds 24(12):339–349

    PubMed  Google Scholar 

  37. Antoniou S, Antoniou G, Granderath F, Simopoulos C (2009) The role of matrix metalloproteinases in the pathogenesis of abdominal wall hernias. Eur J Clin Invest 39(11):953–959. https://doi.org/10.1111/j.1365-2362.2009.02199.x

    Article  CAS  PubMed  Google Scholar 

  38. Mignatti P, Rifkin DB, Welgus HG, Parks WC (1988) Proteinases and tissue remodeling. Mol Cell Biol. https://doi.org/10.1007/978-1-4899-0185-9_14

    Article  Google Scholar 

  39. Di Caprio R, Lembo S, Di Costanzo L, Balato A, Monfrecola G (2015) Anti-inflammatory properties of low and high doxycycline doses: an in vitro study. Mediators Inflamm. https://doi.org/10.1155/2015/329418

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sun J, Shigemi H, Tanaka Y, Yamauchi T, Ueda T, Iwasaki H (2015) Tetracyclines downregulate the production of LPS-induced cytokines and chemokines in THP-1 cells via ERK, p38, and nuclear factor-κB signaling pathways. Biochem Biophys Rep 4:397–404. https://doi.org/10.1016/j.bbrep.2015.11.003

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gabriele S, Buchanan B, Kundu A, Dwyer HC, Gabriele JP, Mayer P et al (2018) Stability, activity, and application of topical doxycycline formulations in a diabetic wound case study. Wounds 31(2):49–54

    PubMed  Google Scholar 

  42. Hedayatyanfard K, Khoulenjani SB, Abdollahifar MA, Amani D, Habibi B, Zare F, et al (2020) Chitosan/PVA/Doxycycline film and nanofiber accelerate diabetic wound healing in a rat model. Iran J Pharm Sci 19(4):225. https://doi.org/10.22037/ijpr.2020.112620.13859

Download references

Author information

Authors and Affiliations

Authors

Contributions

Each author has made an important scientific contribution to the study and has assisted with the drafting or revising of the manuscript.

Corresponding author

Correspondence to Moosa Javdani.

Ethics declarations

Conflicts of interest

The authors declare they have no conflicts of interest.

Ethics, consent and permissions

All investigational procedures used in this study were reviewed and approved by the Council of Department of Veterinary Clinical Sciences of the Shahrekord University (13990925; P/47/170).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravian, P., Javdani, M., Noorbakhnia, R. et al. Preparation and evaluation of chitosan skin patches containing mesoporous silica nanoparticles loaded by doxycycline on skin wound healing. Arch Dermatol Res 315, 1333–1345 (2023). https://doi.org/10.1007/s00403-022-02518-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-022-02518-w

Keywords

Navigation