Skip to main content

Advertisement

Log in

Calponin 3 regulates stress fiber formation in dermal fibroblasts during wound healing

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Skin wound healing is an intricate process involving various cell types and molecules. In granulation tissue, fibroblasts proliferate and differentiate into myofibroblasts and generate mechanical tension for wound closure and contraction. Actin stress fibers formed in these cells, especially those containing α-smooth muscle actin (α-SMA), are the central machinery for contractile force generation. In the present study, calponin 3 (CNN3), which has a phosphorylation-dependent actin-binding property, was identified in the molecular mechanism underlying stress fiber formation. CNN3 was expressed by fibroblasts/myofibroblasts in the proliferation phase of wound healing, and was associated with α-SMA in stress fibers formed by cultured dermal fibroblasts. CNN3 expression was post-transcriptionally regulated by tension, as demonstrated by disruption of actin filament organization under floating culture or blebbistatin treatment. CNN3 knockdown in primary fibroblasts impaired stress fiber formation, resulting in a phenotype of decreased cellular dynamics such as cell motility and contractile ability. These findings indicate that CNN3 participates in actin stress fiber remodeling, which is required for cell motility and contraction of dermal fibroblasts in the wound healing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

PBS:

Phosphate-buffered saline

CNN3:

Calponin 3

α-SMA:

α-Smooth muscle actin

References

  1. Appel S, Allen PG, Vetterkind S, Jin JP, Morgan KG (2010) h3/Acidic calponin: an actin-binding protein that controls extracellular signal-regulated kinase 1/2 activity in nonmuscle cells. Mol Biol Cell 21(8):1409–1422

    Article  PubMed  CAS  Google Scholar 

  2. Applegate D, Feng W, Green RS, Taubman MB (1994) Cloning and expression of a novel acidic calponin isoform from rat aortic vascular smooth muscle. J Biol Chem 269(14):10683–10690

    PubMed  CAS  Google Scholar 

  3. Barisic-Dujmovic T, Boban I, Clark SH (2010) Fibroblasts/myofibroblasts that participate in cutaneous wound healing are not derived from circulating progenitor cells. J Cell Physiol 222(3):703–712

    PubMed  CAS  Google Scholar 

  4. Byers HR, White GE, Fujiwara K (1984) Organization and function of stress fibers in cells in vitro and in situ. A review. Cell Muscle Motil 5:83–137

    PubMed  CAS  Google Scholar 

  5. Condeelis J, Singer RH (2005) How and why does beta-actin mRNA target? Biol Cell 97(1):97–110

    Article  PubMed  CAS  Google Scholar 

  6. Cramer LP, Siebert M, Mitchison TJ (1997) Identification of novel graded polarity actin filament bundles in locomoting heart fibroblasts: implications for the generation of motile force. J Cell Biol 136(6):1287–1305

    Article  PubMed  CAS  Google Scholar 

  7. Danninger C, Gimona M (2000) Live dynamics of GFP-calponin: isoform-specific modulation of the actin cytoskeleton and autoregulation by C-terminal sequences. J Cell Sci 113(Pt 21):3725–3736

    PubMed  CAS  Google Scholar 

  8. Desmouliere A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146(1):56–66

    PubMed  CAS  Google Scholar 

  9. Ehrlich HP, Hembry RM (1984) A comparative study of fibroblasts in healing freeze and burn injuries in rats. Am J Pathol 117(2):218–224

    PubMed  CAS  Google Scholar 

  10. Ehrlich HP, Rajaratnam JB (1990) Cell locomotion forces versus cell contraction forces for collagen lattice contraction: an in vitro model of wound contraction. Tissue Cell 22(4):407–417

    Article  PubMed  CAS  Google Scholar 

  11. Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200(4):500–503

    Article  PubMed  CAS  Google Scholar 

  12. Griffin MA, Sen S, Sweeney HL, Discher DE (2004) Adhesion-contractile balance in myocyte differentiation. J Cell Sci 117(Pt 24):5855–5863

    Article  PubMed  CAS  Google Scholar 

  13. Hinz B (2007) Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 127(3):526–537

    Article  PubMed  CAS  Google Scholar 

  14. Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C (2001) Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 12(9):2730–2741

    Article  PubMed  CAS  Google Scholar 

  15. Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G (2001) Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol 159(3):1009–1020

    Article  PubMed  CAS  Google Scholar 

  16. Hossain MM, Crish JF, Eckert RL, Lin JJ, Jin JP (2005) h2-Calponin is regulated by mechanical tension and modifies the function of actin cytoskeleton. J Biol Chem 280(51):42442–42453

    Article  PubMed  CAS  Google Scholar 

  17. Hossain MM, Smith PG, Wu K, Jin JP (2006) Cytoskeletal tension regulates both expression and degradation of h2-calponin in lung alveolar cells. Biochemistry 45(51):15670–15683

    Article  PubMed  CAS  Google Scholar 

  18. Huang QQ, Hossain MM, Wu K, Parai K, Pope RM, Jin JP (2008) Role of H2-calponin in regulating macrophage motility and phagocytosis. J Biol Chem 283(38):25887–25899

    Article  PubMed  CAS  Google Scholar 

  19. Huttelmaier S, Zenklusen D, Lederer M, Dictenberg J, Lorenz M, Meng X, Bassell GJ, Condeelis J, Singer RH (2005) Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438(7067):512–515

    Article  PubMed  Google Scholar 

  20. Kaneko T, Amano M, Maeda A, Goto H, Takahashi K, Ito M, Kaibuchi K (2000) Identification of calponin as a novel substrate of Rho-kinase. Biochem Biophys Res Commun 273(1):110–116

    Article  PubMed  CAS  Google Scholar 

  21. Katoh K, Kano Y, Amano M, Onishi H, Kaibuchi K, Fujiwara K (2001) Rho-kinase–mediated contraction of isolated stress fibers. J Cell Biol 153(3):569–584

    Article  PubMed  CAS  Google Scholar 

  22. Katoh K, Kano Y, Masuda M, Onishi H, Fujiwara K (1998) Isolation and contraction of the stress fiber. Mol Biol Cell 9(7):1919–1938

    Article  PubMed  CAS  Google Scholar 

  23. Kislauskis EH, Zhu X, Singer RH (1994) Sequences responsible for intracellular localization of beta-actin messenger RNA also affect cell phenotype. J Cell Biol 127(2):441–451

    Article  PubMed  CAS  Google Scholar 

  24. Kovacs M, Toth J, Hetenyi C, Malnasi-Csizmadia A, Sellers JR (2004) Mechanism of blebbistatin inhibition of myosin II. J Biol Chem 279(34):35557–35563

    Article  PubMed  CAS  Google Scholar 

  25. Kreis TE, Birchmeier W (1980) Stress fiber sarcomeres of fibroblasts are contractile. Cell 22(2 Pt 2):555–561

    Article  PubMed  CAS  Google Scholar 

  26. Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84(3):359–369

    Article  PubMed  CAS  Google Scholar 

  27. Lawrence JB, Singer RH (1986) Intracellular localization of messenger RNAs for cytoskeletal proteins. Cell 45(3):407–415

    Article  PubMed  CAS  Google Scholar 

  28. Leung T, Chen XQ, Manser E, Lim L (1996) The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol Cell Biol 16(10):5313–5327

    PubMed  CAS  Google Scholar 

  29. Leung T, Manser E, Tan L, Lim L (1995) A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem 270(49):29051–29054

    Article  PubMed  CAS  Google Scholar 

  30. Li B, Wang JH (2011) Fibroblasts and myofibroblasts in wound healing: force generation and measurement. J Tissue Viability 20(4):108–120

    Article  PubMed  Google Scholar 

  31. Liu Z, van Grunsven LA, Van Rossen E, Schroyen B, Timmermans JP, Geerts A, Reynaert H (2010) Blebbistatin inhibits contraction and accelerates migration in mouse hepatic stellate cells. Br J Pharmacol 159(2):304–315

    Article  PubMed  CAS  Google Scholar 

  32. Martinez-Ferrer M, Afshar-Sherif AR, Uwamariya C, de Crombrugghe B, Davidson JM, Bhowmick NA (2009) Dermal transforming growth factor-beta responsiveness mediates wound contraction and epithelial closure. Am J Pathol 176(1):98–107

    Article  PubMed  Google Scholar 

  33. Miyoshi H (2004) Gene delivery to hematopoietic stem cells using lentiviral vectors. Methods Mol Biol 246:429–438

    PubMed  CAS  Google Scholar 

  34. Morgan KG, Gangopadhyay SS (2001) Invited review: cross-bridge regulation by thin filament-associated proteins. J Appl Physiol 91(2):953–962

    PubMed  CAS  Google Scholar 

  35. Patel VL, Mitra S, Harris R, Buxbaum AR, Lionnet T, Brenowitz M, Girvin M, Levy M, Almo SC, Singer RH, Chao JA (2012) Spatial arrangement of an RNA zipcode identifies mRNAs under post-transcriptional control. Genes Dev 26(1):43–53

    Article  PubMed  CAS  Google Scholar 

  36. Paterson HF, Self AJ, Garrett MD, Just I, Aktories K, Hall A (1990) Microinjection of recombinant p21rho induces rapid changes in cell morphology. J Cell Biol 111(3):1001–1007

    Article  PubMed  CAS  Google Scholar 

  37. Pellegrin S, Mellor H (2007) Actin stress fibres. J Cell Sci 120(Pt 20):3491–3499

    Article  PubMed  CAS  Google Scholar 

  38. Rhee S, Grinnell F (2007) Fibroblast mechanics in 3D collagen matrices. Adv Drug Deliv Rev 59(13):1299–1305

    Article  PubMed  CAS  Google Scholar 

  39. Rodriguez AJ, Czaplinski K, Condeelis JS, Singer RH (2008) Mechanisms and cellular roles of local protein synthesis in mammalian cells. Curr Opin Cell Biol 20(2):144–149

    Article  PubMed  CAS  Google Scholar 

  40. Sandbo N, Dulin N (2011) Actin cytoskeleton in myofibroblast differentiation: ultrastructure defining form and driving function. Transl Res 158(4):181–196

    Article  PubMed  CAS  Google Scholar 

  41. Serini G, Gabbiani G (1999) Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res 250(2):273–283

    Article  PubMed  CAS  Google Scholar 

  42. Shibukawa Y, Yamazaki N, Daimon E, Wada Y (2012) Rock-dependent calponin 3 phosphorylation regulates myoblast fusion. Exp Cell Res 319(5):633–648

    Article  PubMed  Google Scholar 

  43. Shibukawa Y, Yamazaki N, Kumasawa K, Daimon E, Tajiri M, Okada Y, Ikawa M, Wada Y (2010) Calponin 3 regulates actin cytoskeleton rearrangement in trophoblastic cell fusion. Mol Biol Cell 21(22):3973–3984

    Article  PubMed  CAS  Google Scholar 

  44. Small JV, Gimona M (1998) The cytoskeleton of the vertebrate smooth muscle cell. Acta Physiol Scand 164(4):341–348

    Article  PubMed  CAS  Google Scholar 

  45. Strasser P, Gimona M, Moessler H, Herzog M, Small JV (1993) Mammalian calponin. Identification and expression of genetic variants. FEBS Lett 330(1):13–18

    Article  PubMed  CAS  Google Scholar 

  46. Takahashi K, Kaneko I (1986) DNA fragments of 300 base pairs released from metaphase chromosomes by digestion with deoxyribonuclease I. Biochem Biophys Res Commun 138(1):413–418

    Article  PubMed  CAS  Google Scholar 

  47. Tang J, Hu G, Hanai J, Yadlapalli G, Lin Y, Zhang B, Galloway J, Bahary N, Sinha S, Thisse B, Thisse C, Jin JP, Zon LI, Sukhatme VP (2006) A critical role for calponin 2 in vascular development. J Biol Chem 281(10):6664–6672

    Article  PubMed  CAS  Google Scholar 

  48. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349–363

    Article  PubMed  CAS  Google Scholar 

  49. Tomasek JJ, Haaksma CJ, Eddy RJ, Vaughan MB (1992) Fibroblast contraction occurs on release of tension in attached collagen lattices: dependency on an organized actin cytoskeleton and serum. Anat Rec 232(3):359–368

    Article  PubMed  CAS  Google Scholar 

  50. Watanabe N, Kato T, Fujita A, Ishizaki T, Narumiya S (1999) Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol 1(3):136–143

    Article  PubMed  CAS  Google Scholar 

  51. Winder SJ, Allen BG, Fraser ED, Kang HM, Kargacin GJ, Walsh MP (1993) Calponin phosphorylation in vitro and in intact muscle. Biochem J 296(Pt 3):827–836

    PubMed  CAS  Google Scholar 

  52. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60(1):24–34

    Article  PubMed  Google Scholar 

  53. Yoshimoto R, Hori M, Ozaki H, Karaki H (2000) Proteolysis of acidic calponin by mu-calpain. J Biochem 128(6):1045–1049

    Article  PubMed  CAS  Google Scholar 

  54. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15(9):871–875

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Hiroyuki Miyoshi (RIKEN BRC) for providing lentivirus vectors. This work was supported in part by Grants-in-Aid for Scientific Research (B) (23390081), (C) (24591618) and the Global Centers of Excellence (GCOE) Program of Osaka University from the Japan Society for the Promotion of Science (JSPS).

Conflict of interest

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinao Wada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 19800 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daimon, E., Shibukawa, Y. & Wada, Y. Calponin 3 regulates stress fiber formation in dermal fibroblasts during wound healing. Arch Dermatol Res 305, 571–584 (2013). https://doi.org/10.1007/s00403-013-1343-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-013-1343-8

Keywords

Navigation