Skip to main content

Advertisement

Log in

The meniscotibial ligament role in meniscal extrusion: a systematic review and meta-analysis

  • Arthroscopy and Sports Medicine
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

The meniscotibial ligament (MTL) limits extrusion of the medial meniscus (MM). While meniscal extrusion may be detrimental to knee joint biomechanics, the role of the MTL in meniscal extrusion is debatable. We sought to perform a systematic review and meta-analysis to evaluate the role of the MTL and surgical techniques for MTL repair.

Materials and methods

Following Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines we searched PubMed, Cochrane Library, and Embase for: ((“Meniscotibial”) OR (“Coronary”) OR (“Ramp”)) AND (“Extrusion”). After screening and applying eligibility criteria, data were extracted for MTL pathology types (“traumatic” ruptures or “induced” injuries) and meniscal extrusion. A meta-analysis evaluated the mean difference of extrusion between “intact” MTLs (native or repaired) and “injured” MTLs (induced or traumatic). We further performed a subgroup analysis between traumatic and induced MTL lesions.

Results

This systematic review included six studies, which all evaluated MM extrusion. There were 74 knees with induced MTL injuries and 19 knees with traumatic MTL ruptures. Study designs were heterogenic and utilized three types of MTL repair procedures. The meta-analysis included 18 human knees and revealed that sectioning the MTL created a 2.92 mm [− 0.18 to 6.03] MM extrusion, while MTL repair decreased MM extrusion by − 2.11 mm [− 3.03 to − 1.21].

Conclusions

MTL injury may result in approximately 3 mm of MM extrusion, while repair of the MTL can decrease extrusion by 2 mm. Several novel surgical techniques exist to repair the MTL. However, studies reporting clinical outcomes of these various procedures are scarce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data is available per request to corresponding author.

References

  1. Chahla J, Beletsky A, Smigielski R, Brown CH (2022) Meniscal pathology: meniscus anatomy. Evid Based Manag Complex Knee Injuries. https://doi.org/10.1016/B978-0-323-71310-8.00013-X

    Article  Google Scholar 

  2. Cavaignac E, Sylvie R, Teulières M et al (2021) What is the relationship between the distal semimembranosus tendon and the medial meniscus? A gross and microscopic analysis from the SANTI Study Group. Am J Sports Med 49:459–466. https://doi.org/10.1177/0363546520980076

    Article  PubMed  Google Scholar 

  3. DePhillipo NN, Moatshe G, Chahla J et al (2019) Quantitative and qualitative assessment of the posterior medial meniscus anatomy: defining meniscal ramp lesions. Am J Sports Med 47:372–378. https://doi.org/10.1177/0363546518814258

    Article  PubMed  Google Scholar 

  4. Gajjar SM, Solanki KP, Shanmugasundaram S, Kambhampati SBS (2021) Meniscal extrusion: a narrative review. Orthop J Sports Med. https://doi.org/10.1177/23259671211043797

    Article  PubMed  Google Scholar 

  5. Hamberg P, Gillquist J, Lysholm J (1983) Suture of new and old peripheral meniscus tears. J Bone Jt Surg Ser A 65:193–197. https://doi.org/10.2106/00004623-198365020-00007

    Article  CAS  Google Scholar 

  6. Thaunat M, Ingale P, Penet A et al (2021) Ramp lesion subtypes: prevalence, imaging, and arthroscopic findings in 2156 anterior cruciate ligament reconstructions. Am J Sports Med 49:1813–1821. https://doi.org/10.1177/03635465211006103

    Article  PubMed  Google Scholar 

  7. DePhillipo NN, Moatshe G, Brady A et al (2018) Effect of meniscocapsular and meniscotibial lesions in ACL-deficient and ACL-reconstructed knees: a biomechanical study. Am J Sports Med 46:2422–2431. https://doi.org/10.1177/0363546518774315

    Article  PubMed  Google Scholar 

  8. Stephen JM, Halewood C, Kittl C et al (2016) Posteromedial meniscocapsular lesions increase tibiofemoral joint laxity with anterior cruciate ligament deficiency, and their repair reduces laxity. Am J Sports Med 44:400–408. https://doi.org/10.1177/0363546515617454

    Article  PubMed  Google Scholar 

  9. Ahn JH, Bae TS, Kang K-S et al (2011) Longitudinal tear of the medial meniscus posterior horn in the anterior cruciate ligament-deficient knee significantly influences anterior stability. Am J Sports Med 39:2187–2193. https://doi.org/10.1177/0363546511416597

    Article  PubMed  Google Scholar 

  10. Aagaard H, Verdonk R (1999) Function of the normal meniscus and consequences of meniscal resection. Scand J Med Sci Sports 9:134–140

    Article  CAS  PubMed  Google Scholar 

  11. Hunter D (2012) Degeneration of the meniscus and progression of osteoarthritis. HSS J 8:13–14. https://doi.org/10.1007/s11420-011-9243-y

    Article  PubMed  Google Scholar 

  12. Menetrey J, Jones DG, Ernlund LS, Fu FH (1999) Posterior peripheral sutures in meniscal allograft replacement. Arthroscopy 15:663–668. https://doi.org/10.1053/ar.1999.v15.0150661

    Article  CAS  PubMed  Google Scholar 

  13. Levy IM, Torzilli PA, Warren RF (1982) The effect of medial meniscectomy on anterior-posterior motion of the knee. J Bone Jt Surg Ser A 64:883–888. https://doi.org/10.2106/00004623-198264060-00011

    Article  CAS  Google Scholar 

  14. Samitier G, Alentorn-Geli E, Taylor DC et al (2015) Meniscal allograft transplantation. Part 1: systematic review of graft biology, graft shrinkage, graft extrusion, graft sizing, and graft fixation. Knee Surg Sports Traumatol Arthrosc 23:310–322. https://doi.org/10.1007/s00167-014-3334-5

    Article  PubMed  Google Scholar 

  15. Bloecker K, Wirth W, Guermazi A et al (2015) Relationship between medial meniscal extrusion and cartilage loss in specific femorotibial subregions: Data from the osteoarthritis initiative. Arthritis Care Res 67:1545–1552. https://doi.org/10.1002/acr.22615

    Article  CAS  Google Scholar 

  16. Daney BT, Aman ZS, Krob JJ et al (2019) Utilization of transtibial centralization suture best minimizes extrusion and restores tibiofemoral contact mechanics for anatomic medial meniscal root repairs in a cadaveric model. Am J Sports Med 47:1591–1600. https://doi.org/10.1177/0363546519844250

    Article  PubMed  Google Scholar 

  17. Harper KW, Helms CA, Lambert HS, Higgins LD (2005) Radial meniscal tears: significance, incidence, and MR appearance. AJR Am J Roentgenol 185:1429–1434. https://doi.org/10.2214/AJR.04.1024

    Article  PubMed  Google Scholar 

  18. Ozeki N, Muneta T, Kawabata K et al (2017) Centralization of extruded medial meniscus delays cartilage degeneration in rats. J Orthop Sci 22:542–548. https://doi.org/10.1016/j.jos.2017.01.024

    Article  PubMed  Google Scholar 

  19. Lee DH (2018) Incidence and extent of graft extrusion following meniscus allograft transplantation. BioMed Res Int. https://doi.org/10.1155/2018/5251910

    Article  PubMed  PubMed Central  Google Scholar 

  20. Veltri DM, Warren RF, Wickiewicz TL, O’Brien SJ (1994) Current status of allograft meniscal transplantation. Clin Orthop Relat Res 303:44–55

    Article  Google Scholar 

  21. de Boer HH, Koudstaal J (1994) Failed meniscus transplantation. A report of three cases. Clin Orthop Relat Res 306:155–162

    Google Scholar 

  22. Noyes FR, Barber-Westin SD (2015) A systematic review of the incidence and clinical significance of postoperative meniscus transplant extrusion. Knee Surg Sports Traumatol Arthrosc 23:290–302. https://doi.org/10.1007/s00167-014-3329-2

    Article  PubMed  Google Scholar 

  23. Bin Il S, Kim HJ, Lee DH (2018) Graft extrusion after medial and lateral MAT differs according to surgical technique: a meta-analysis. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-018-2922-0

    Article  Google Scholar 

  24. Ozeki N, Seil R, Krych AJ, Koga H (2021) Surgical treatment of complex meniscus tear and disease: state of the art. J ISAKOS 6:35–45. https://doi.org/10.1136/jisakos-2019-000380

    Article  PubMed  Google Scholar 

  25. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6:e1000100. https://doi.org/10.1371/JOURNAL.PMED.1000100

    Article  PubMed  PubMed Central  Google Scholar 

  26. NIH (2014) Study quality assessment tools NHLBI, NIH. National Heart, Lung, and Blood Institute

    Google Scholar 

  27. Wilke J, Krause F, Niederer D et al (2015) Appraising the methodological quality of cadaveric studies: validation of the QUACS scale. J Anat 226:440. https://doi.org/10.1111/JOA.12292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Higgins JPT, Thomas J, Chandler J et al (2019) Cochrane handbook for systematic reviews of interventions. Wiley

    Book  Google Scholar 

  29. Debieux P, Jimenez AE, Novaretti JV et al (2021) Medial meniscal extrusion greater than 4 mm reduces medial tibiofemoral compartment contact area: a biomechanical analysis of tibiofemoral contact area and pressures with varying amounts of meniscal extrusion. Knee Surg Sports Traumatol Arthrosc 29:3124–3132. https://doi.org/10.1007/s00167-020-06363-0

    Article  PubMed  Google Scholar 

  30. Paletta GA, Crane DM, Konicek J et al (2020) Surgical treatment of meniscal extrusion: a biomechanical study on the role of the medial meniscotibial ligaments with early clinical validation. Orthop J Sports Med 8:2325967120936672. https://doi.org/10.1177/2325967120936672

    Article  PubMed  PubMed Central  Google Scholar 

  31. Seil R, Dück K, Pape D (2011) A clinical sign to detect root avulsions of the posterior horn of the medial meniscus. Knee Surg Sports Traumatol Arthrosc 19:2072–2075. https://doi.org/10.1007/s00167-011-1550-9

    Article  PubMed  Google Scholar 

  32. Mariani PP, Torre G, Battaglia MJ (2022) The post-traumatic meniscal extrusion, sign of meniscotibial ligament injury. A case series. Orthop Traumatol 108:103226. https://doi.org/10.1016/j.otsr.2022.103226

    Article  Google Scholar 

  33. Ozeki N, Matsuda J, Muneta T et al (2016) Biomechanical analysis of centralization with an anchor for meniscus extrusion in a porcine model. In: Orthopaedic Research Society Annual Meeting, p 1483

  34. Haddaway NR, Page MJ, Pritchard CC, McGuinness LA (2022) PRISMA2020: an R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and open synthesis. Campbell Syst Rev. https://doi.org/10.1002/cl2.1230

    Article  PubMed  PubMed Central  Google Scholar 

  35. Koga H, Nakamura T, Nakagawa Y et al (2021) Arthroscopic centralization using knotless anchors for extruded medial meniscus. Arthrosc Tech 10:e639–e645. https://doi.org/10.1016/j.eats.2020.10.051

    Article  PubMed  PubMed Central  Google Scholar 

  36. Koga H, Nakamura T, Katagiri H et al (2020) Two-year outcomes after meniscoplasty by capsular advancement with the application of arthroscopic centralization technique for lateral compartment knee osteoarthritis. Am J Sports Med 48:3154–3162. https://doi.org/10.1177/0363546520957367

    Article  PubMed  Google Scholar 

  37. Kohno Y, Koga H, Ozeki N et al (2022) Biomechanical analysis of a centralization procedure for extruded lateral meniscus after meniscectomy in porcine knee joints. J Orthop Res 40:1097–1103. https://doi.org/10.1002/jor.25146

    Article  PubMed  Google Scholar 

  38. Black AK, Schlepp C, Zapf M, Reid JB (2018) Technique for arthroscopically assisted superficial and deep medial collateral ligament-meniscotibial ligament repair with internal brace augmentation. Arthrosc Tech 7:e1215–e1219. https://doi.org/10.1016/j.eats.2018.08.006

    Article  PubMed  PubMed Central  Google Scholar 

  39. Webb SA, Brassett C, Chitnavis J (2017) MRI and clinical patterns in adult humans with symptomatic meniscal tears necessitating knee surgery. J Anat 231: 445-468

  40. Krych AJ, LaPrade MD, Hevesi M et al (2020) Investigating the chronology of meniscus root tears: do medial meniscus posterior root tears cause extrusion or the other way around? Orthop J Sports Med 8:232596712096136. https://doi.org/10.1177/2325967120961368

    Article  Google Scholar 

  41. Costa CR, Morrison WB, Carrino JA (2004) Medial meniscus extrusion on knee MRI: is extent associated with severity of degeneration or type of tear? Am J Roentgenol 183:17–23. https://doi.org/10.2214/ajr.183.1.1830017

    Article  Google Scholar 

  42. Svensson F, Felson DT, Turkiewicz A et al (2019) Scrutinizing the cut-off for “pathological” meniscal body extrusion on knee MRI. Eur Radiol 29:2616–2623. https://doi.org/10.1007/s00330-018-5914-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krych AJ, Bernard CD, Leland DP et al (2020) Isolated meniscus extrusion associated with meniscotibial ligament abnormality. Knee Surg Sports Traumatol Arthrosc 28:3599–3605. https://doi.org/10.1007/s00167-019-05612-1

    Article  PubMed  Google Scholar 

  44. Krych AJ, Nauert RF, Song BM et al (2021) Association between transtibial meniscus root repair and rate of meniscal healing and extrusion on postoperative magnetic resonance imaging: a prospective multicenter study. Orthop J Sports Med 9:232596712110237. https://doi.org/10.1177/23259671211023774

    Article  Google Scholar 

  45. Chernchujit B, Prasetia R (2018) Arthroscopic direct meniscal extrusion reduction: surgical tips to reduce persistent meniscal extrusion in meniscal root repair. Eur J Orthop Surg Traumatol 28:727–734. https://doi.org/10.1007/s00590-018-2138-6

    Article  PubMed  Google Scholar 

  46. Zhang Y, Hou S, Li L et al (2018) Arthroscopic techniques and instruments for meniscal allograft transplantation using the bone bridge in trough method. Exp Ther Med. https://doi.org/10.3892/etm.2018.7090

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schreiner AJ, Stannard JP, Cook CR et al (2021) Comparison of meniscal allograft transplantation techniques using a preclinical canine model. J Orthop Res 39:154–164. https://doi.org/10.1002/jor.24668

    Article  PubMed  Google Scholar 

  48. Condron NB, Knapik DM, Gilat R et al (2022) Concomitant meniscotibial ligament reconstruction decreases meniscal extrusion following medial meniscus allograft transplantation: a cadaveric analysis. Arthroscopy. https://doi.org/10.1016/J.ARTHRO.2022.06.015

    Article  PubMed  Google Scholar 

  49. Srimongkolpitak S, Chernchujit B (2022) Current concepts on meniscal repairs. J Clin Orthopaed Trauma 27:101810. https://doi.org/10.1016/j.jcot.2022.101810

    Article  Google Scholar 

  50. Liu X, Feng H, Zhang H et al (2011) Arthroscopic prevalence of ramp lesion in 868 patients with anterior cruciate ligament injury. Am J Sports Med 39:832–837. https://doi.org/10.1177/0363546510388933

    Article  PubMed  Google Scholar 

  51. Hughston JC (1993) Knee ligaments: injury and repair. Mosby Incorporated

    Google Scholar 

  52. Sonnery-Cottet B, Conteduca J, Thaunat M et al (2014) Hidden lesions of the posterior horn of the medial meniscus: a systematic arthroscopic exploration of the concealed portion of the knee. Am J Sports Med 42:921–926. https://doi.org/10.1177/0363546514522394

    Article  PubMed  Google Scholar 

  53. Zoga AC, Rutigliano S, Roedl J, Morrison WB (2017) Abstracts 2017 society of skeletal radiology annual scientific meeting. Skelet Radiol 46:415–441. https://doi.org/10.1007/s00256-016-2547-8

    Article  Google Scholar 

  54. Bassett AJ, Hadley CJ, Tjoumakaris F, Freedman KB (2019) The meniscal grammar signs: comma and apostrophe signs for characterization of a displaced fragment in the meniscal recess. Arthrosc Tech 8:e727–e732. https://doi.org/10.1016/j.eats.2019.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  55. Salem HS, Carter AH, Shi WJ et al (2018) The meniscal comma sign: characterization and treatment of a displaced fragment in the meniscotibial recess. Orthopedics. https://doi.org/10.3928/01477447-20180501-01

    Article  PubMed  Google Scholar 

  56. Lougher L, Southgate CRW, Holt MD (2003) Coronary ligament rupture as a cause of medial knee pain. Arthroscopy 19:e157–e158. https://doi.org/10.1016/j.arthro.2003.10.027

    Article  Google Scholar 

  57. El-Khoury GY, Usta HY, Berger RA (1984) Meniscotibial (coronary) ligament tears. Skelet Radiol 11:191–196. https://doi.org/10.1007/BF00349493

    Article  CAS  Google Scholar 

  58. Bollier M, Smith PA (2014) Anterior cruciate ligament and medial collateral ligament injuries. J Knee Surg 27:359–368. https://doi.org/10.1055/S-0034-1381961

    Article  PubMed  Google Scholar 

Download references

Funding

No funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RG conceptualized, designed, supervised, and revised this work. IYM designed, acquired data, analyzed, interpreted and drafted this work. TM acquired data, analyzed and drafted this work. GA, DL, and YB supervised and critically revised this work. All authors approved the submitted version of this work and agreed to be personally accountable for their own contributions.

Corresponding author

Correspondence to Ron Gilat.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This is a systematic review and no ethical approval was required.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilat, R., Mitchnik, I.Y., Mimouni, T. et al. The meniscotibial ligament role in meniscal extrusion: a systematic review and meta-analysis. Arch Orthop Trauma Surg 143, 5777–5786 (2023). https://doi.org/10.1007/s00402-023-04934-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-023-04934-7

Keywords

Navigation