Skip to main content

Advertisement

Log in

Biomechanical analysis of recently released cephalomedullary nails for trochanteric femoral fracture fixation in a human cadaveric model

  • Trauma Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Background

Recently, two novel concepts for intramedullary nailing of trochanteric fractures using a helical blade or interlocking dual screws have demonstrated advantages as compared to standard single-screw systems. However, these two concepts have not been subjected to a direct biomechanical comparison so far. The aims of this study were to investigate in a human cadaveric model with low bone quality (1) the biomechanical competence of nailing with the use of a helical blade versus interlocking screws, and (2) the effect of cement augmentation on the fixation strength of the helical blade.

Methods

Twelve osteoporotic and osteopenic human cadaveric femoral pairs were assigned for pairwise implantation using either a short TFN-ADVANCED Proximal Femoral Nailing System (TFNA) with a helical blade head element or a short TRIGEN INTERTAN Intertrochanteric Antegrade Nail (InterTAN) with interlocking screws. Six osteoporotic femora, implanted with TFNA, were augmented with bone cement. Four groups were created: group 1 (TFNA) paired with group 2 (InterTAN), both consisting of osteopenic specimens, and group 3 (TFNA augmented) paired with group 4 (InterTAN), both consisting of osteoporotic specimens. An unstable trochanteric AO/OTA 31-A2.2 fracture was simulated and all specimens were tested until failure under progressively increasing cyclic loading.

Results

Stiffness in group 3 was significantly higher versus group 4, p = 0.03. Varus (°) and femoral head rotation around the femoral neck axis (°) after 10,000 cycles were 1.9 ± 1.0/0.3 ± 0.2 in group 1, 2.2 ± 0.7/0.7 ± 0.4 in group 2, 1.5 ± 1.3/0.3 ± 0.2 in group 3 and 3.5 ± 2.8/0.9 ± 0.6 in group 4, being significantly different between groups 3 and 4, p = 0.04. Cycles to failure and failure load (N) at 5° varus or 10° femoral head rotation around the neck axis in groups 1–4 were 21,428 ± 6020/1571.4 ± 301.0, 20,611 ± 7453/1530.6 ± 372.7, 21,739 ± 4248/1587.0 ± 212.4 and 18,622 ± 6733/1431.1 ± 336.7, being significantly different between groups 3 and 4, p = 0.04.

Conclusions

Nailing of trochanteric femoral fractures with use of helical blades is comparable to interlocking dual screws fixation in femoral head fragments with low bone quality. Bone cement augmentation of helical blades provides significantly greater fixation strength compared to interlocking screws constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baumgaertner MR, Solberg BD (1997) Awareness of tip-apex distance reduces failure of fixation of trochanteric fractures of the hip. J Bone Joint Surg Br 79(6):969–971

    Article  CAS  PubMed  Google Scholar 

  2. Bergmann G, Deuretzbacher G, Heller M et al (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34(7):859–871

    Article  CAS  PubMed  Google Scholar 

  3. Bonnaire F, Weber A, Bösl O, Eckhardt C, Schwieger K, Linke B (2007) “Cutting out” in pertrochanteric fractures–problem of osteoporosis? Unfallchirurg 110(5):425–432

    Article  CAS  PubMed  Google Scholar 

  4. Chapman T, Zmistowski B, Krieg J, Stake S, Jones CM, Levicoff E (2018) Helical blade versus screw fixation in the treatment of hip fractures with cephalomedullary devices: incidence of failure and atypical “Medial Cutout.” J Orthop Trauma 32(8):397–402

    Article  PubMed  Google Scholar 

  5. Chun KJ (2011) Bone densitometry. Semin Nucl Med 41(3):220–228

    Article  PubMed  Google Scholar 

  6. Cinque ME, Goodnough LH, Md BJS et al (2021) Short versus long cephalomedullary nailing of intertrochanteric fractures: a meta-analysis of 3208 patients. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-021-03752-z

    PubMed  Google Scholar 

  7. Frei HC, Hotz T, Cadosch D, Rudin M, Käch K (2012) Central head perforation, or “cut through,” caused by the helical blade of the proximal femoral nail antirotation. J Orthop Trauma 26(8):e102-107

    Article  PubMed  Google Scholar 

  8. Goffin JM, Pankaj P, Simpson AH, Seil R, Gerich TG (2013) Does bone compaction around the helical blade of a proximal femoral nail anti-rotation (PFNA) decrease the risk of cut-out?: a subject-specific computational study. Bone Joint Res 2(5):79–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gueorguiev B, Ockert B, Schwieger K et al (2011) Angular stability potentially permits fewer locking screws compared with conventional locking in intramedullary nailed distal tibia fractures: a biomechanical study. J Orthop Trauma 25(6):340–346

    Article  PubMed  Google Scholar 

  10. Hoffmann S, Paetzold R, Stephan D, Püschel K, Buehren V, Augat P (2013) Biomechanical evaluation of interlocking lag screw design in intramedullary nailing of unstable pertrochanteric fractures. J Orthop Trauma 27(9):483–490

    Article  PubMed  Google Scholar 

  11. Hsueh KK, Fang CK, Chen CM, Su YP, Wu HF, Chiu FY (2010) Risk factors in cutout of sliding hip screw in intertrochanteric fractures: an evaluation of 937 patients. Int Orthop 34(8):1273–1276

    Article  PubMed  Google Scholar 

  12. Huang Y, Zhang C, Luo Y (2013) A comparative biomechanical study of proximal femoral nail (InterTAN) and proximal femoral nail antirotation for intertrochanteric fractures. Int Orthop 37(12):2465–2473

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jiang W, Liu Y, Yang L et al (2014) Biomechanical comparative study on proximal femoral locking plate and Gamma3 for treatment of stable intertrochanteric fracture. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 28(9):1096–1099

    PubMed  Google Scholar 

  14. Johnson NA, Uzoigwe C, Venkatesan M et al (2017) Risk factors for intramedullary nail breakage in proximal femoral fractures: a 10-year retrospective review. Ann R Coll Surg Engl 99(2):145–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kammerlander C, Gebhard F, Meier C et al (2011) Standardised cement augmentation of the PFNA using a perforated blade: a new technique and preliminary clinical results. A prospective multicentre trial. Injury 42(12):1484–1490

    Article  CAS  PubMed  Google Scholar 

  16. Kammerlander C, Hem ES, Klopfer T et al (2018) Cement augmentation of the Proximal Femoral Nail Antirotation (PFNA)—a multicentre randomized controlled trial. Injury 49(8):1436–1444

    Article  PubMed  Google Scholar 

  17. Kammerlander C, Pfeufer D, Lisitano LA, Mehaffey S, Böcker W, Neuerburg C (2018) Inability of older adult patients with hip fracture to maintain postoperative weight-bearing restrictions. J Bone Joint Surg Am 100(11):936–941

    Article  PubMed  Google Scholar 

  18. Keppler AM, Pfeufer D, Kau F et al (2021) Cement augmentation of the Proximal Femur Nail Antirotation (PFNA) is associated with enhanced weight-bearing in older adults. Injury. https://doi.org/10.1016/j.injury.2021.01.037

    Article  PubMed  Google Scholar 

  19. Knobe M, Bettag S, Kammerlander C et al (2019) Is bone-cement augmentation of screw-anchor fixation systems superior in unstable femoral neck fractures? A biomechanical cadaveric study. Injury 50(2):292–300

    Article  PubMed  Google Scholar 

  20. Knobe M, Gradl G, Buecking B et al (2015) Locked minimally invasive plating versus fourth generation nailing in the treatment of AO/OTA 31A2.2 fractures: a biomechanical comparison of PCCP(®) and Intertan nail(®). Injury 46(8):1475–1482

    Article  PubMed  Google Scholar 

  21. Knobe M, Gradl G, Ladenburger A, Tarkin IS, Pape HC (2013) Unstable intertrochanteric femur fractures: is there a consensus on definition and treatment in Germany? Clin Orthop Relat Res 471(9):2831–2840

    Article  PubMed  PubMed Central  Google Scholar 

  22. Knobe M, Nagel P, Maier KJ et al (2016) Rotationally stable screw-anchor with locked trochanteric stabilizing plate versus proximal femoral nail antirotation in the treatment of AO/OTA 31A22 fracture: a biomechanical evaluation. J Orthop Trauma 30(1):e12–e18

    Article  PubMed  Google Scholar 

  23. Knobe M, Siebert CH (2014) Hip fractures in the elderly: osteosynthesis versus joint replacement. Orthopade 43(4):314–324

    Article  CAS  PubMed  Google Scholar 

  24. Kold S, Rahbek O, Vestermark M, Overgaard S, Søballe K (2005) Bone compaction enhances fixation of weightbearing titanium implants. Clin Orthop Relat Res 431:138–144

    Article  Google Scholar 

  25. Konstantinidis L, Papaioannou C, Hirschmüller A et al (2013) Intramedullary nailing of trochanteric fractures: central or caudal positioning of the load carrier? A biomechanical comparative study on cadaver bones. Injury 44(6):784–790

    Article  CAS  PubMed  Google Scholar 

  26. Lenich A, Vester H, Nerlich M, Mayr E, Stöckle U, Füchtmeier B (2010) Clinical comparison of the second and third generation of intramedullary devices for trochanteric fractures of the hip-blade vs screw. Injury 41(12):1292–1296

    Article  PubMed  Google Scholar 

  27. Lewis CL, Sahrmann SA (2015) Effect of posture on hip angles and moments during gait. Man Ther 20(1):176–182

    Article  PubMed  Google Scholar 

  28. Lorich DG, Geller DS, Nielson JH (2004) Osteoporotic pertrochanteric hip fractures: management and current controversies. Instr Course Lect 53:441–454

    PubMed  Google Scholar 

  29. Namdari S, Rabinovich R, Scolaro J, Baldwin K, Bhandari M, Mehta S (2013) Absorbable and non-absorbable cement augmentation in fixation of intertrochanteric femur fractures: systematic review of the literature. Arch Orthop Trauma Surg 133(4):487–494

    Article  PubMed  Google Scholar 

  30. Nherera L, Trueman P, Horner A, Watson T, Johnstone AJ (2018) Comparison of a twin interlocking derotation and compression screw cephalomedullary nail (InterTAN) with a single screw derotation cephalomedullary nail (proximal femoral nail antirotation): a systematic review and meta-analysis for intertrochanteric fractures. J Orthop Surg Res 13(1):46

    Article  PubMed  PubMed Central  Google Scholar 

  31. O’Neill F, Condon F, McGloughlin T, Lenehan B, Coffey JC, Walsh M (2011) Dynamic hip screw versus DHS blade: a biomechanical comparison of the fixation achieved by each implant in bone. J Bone Joint Surg Br 93(5):616–621

    Article  CAS  PubMed  Google Scholar 

  32. Oldmeadow LB, Edwards ER, Kimmel LA, Kipen E, Robertson VJ, Bailey MJ (2006) No rest for the wounded: early ambulation after hip surgery accelerates recovery. ANZ J Surg 76(7):607–611

    Article  PubMed  Google Scholar 

  33. Parker MJ, Handoll HH (2004) Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures. Cochrane Database Syst Rev 1:Cd000093

    Google Scholar 

  34. Pfeufer D, Zeller A, Mehaffey S, Böcker W, Kammerlander C, Neuerburg C (2019) Weight-bearing restrictions reduce postoperative mobility in elderly hip fracture patients. Arch Orthop Trauma Surg 139(9):1253–1259

    Article  PubMed  Google Scholar 

  35. Rupprecht M, Grossterlinden L, Ruecker AH et al (2011) A comparative biomechanical analysis of fixation devices for unstable femoral neck fractures: the Intertan versus cannulated screws or a dynamic hip screw. J Trauma 71(3):625–634

    PubMed  Google Scholar 

  36. Sarai H, Schmutz B, Schuetz M (2021) Potential pitfalls of lateral radiographic assessment of the nail position in the distal femur. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-021-03851-x

    PubMed  Google Scholar 

  37. Sermon A, Boner V, Boger A et al (2012) Potential of polymethylmethacrylate cement-augmented helical proximal femoral nail antirotation blades to improve implant stability—a biomechanical investigation in human cadaveric femoral heads. J Trauma Acute Care Surg 72(2):E54-59

    Article  CAS  PubMed  Google Scholar 

  38. Sermon A, Boner V, Schwieger K et al (2012) Biomechanical evaluation of bone-cement augmented Proximal Femoral Nail Antirotation blades in a polyurethane foam model with low density. Clin Biomech 27(1):71–76

    Article  CAS  Google Scholar 

  39. Sermon A, Hofmann-Fliri L, Richards RG, Flamaing J, Windolf M (2014) Cement augmentation of hip implants in osteoporotic bone: how much cement is needed and where should it go? J Orthop Res 32(3):362–368

    Article  CAS  PubMed  Google Scholar 

  40. Sermon A, Zderic I, Khatchadourian R et al (2021) Bone cement augmentation of femoral nail head elements increases their cut-out resistance in poor bone quality—a biomechanical study. J Biomech 118:110301

    Article  PubMed  Google Scholar 

  41. Serrano R, Blair JA, Watson DT et al (2017) Cephalomedullary nail fixation of intertrochanteric femur fractures: are two proximal screws better than one? J Orthop Trauma 31(11):577–582

    Article  PubMed  Google Scholar 

  42. Simmermacher RK, Ljungqvist J, Bail H et al (2008) The new proximal femoral nail antirotation (PFNA) in daily practice: results of a multicentre clinical study. Injury 39(8):932–939

    Article  CAS  PubMed  Google Scholar 

  43. Windolf M, Braunstein V, Dutoit C, Schwieger K (2009) Is a helical shaped implant a superior alternative to the Dynamic Hip Screw for unstable femoral neck fractures? A biomechanical investigation. Clin Biomech 24(1):59–64

    Article  Google Scholar 

  44. Windolf M, Muths R, Braunstein V, Gueorguiev B, Hänni M, Schwieger K (2009) Quantification of cancellous bone-compaction due to DHS Blade insertion and influence upon cut-out resistance. Clin Biomech 24(1):53–58

    Article  Google Scholar 

  45. Wu CC, Wang CJ, Shyu YI (2011) Variations in bone mineral density of proximal femora of elderly people with hip fractures: a case-control analysis. J Trauma 71(6):1720–1725

    PubMed  Google Scholar 

  46. Yaozeng X, Dechun G, Huilin Y, Guangming Z, Xianbin W (2010) Comparative study of trochanteric fracture treated with the proximal femoral nail anti-rotation and the third generation of gamma nail. Injury 41(12):1234–1238

    Article  PubMed  Google Scholar 

  47. Yee DKH, Lau W, Tiu KL et al (2020) Cementation: for better or worse? Interim results of a multi-centre cohort study using a fenestrated spiral blade cephalomedullary device for pertrochanteric fractures in the elderly. Arch Orthop Trauma Surg 140(12):1957–1964

    Article  PubMed  Google Scholar 

  48. Zderic I, Oh JK, Stoffel K et al (2018) Biomechanical analysis of the proximal femoral locking compression plate: do quality of reduction and screw orientation influence construct stability? J Orthop Trauma 32(2):67–74

    Article  PubMed  Google Scholar 

Download references

Funding

This study was performed with the assistance of the AO Foundation and supported by DePuy Synthes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Pastor.

Ethics declarations

Conflict of interest

The authors are not compensated and there are no other institutional subsidies, corporate affiliations, or funding sources supporting this work unless clearly documented and disclosed.

Ethical approval

All procedures performed in this study were followed in accordance with relevant guidelines. This study was approved by the institutional internal review board, based on the approval of the specimens' delivery by Science Care Ethics Committee.

Informed consent

All donors gave their informed consent inherent within the donation of the anatomical gift statement during their lifetime, as registered by Science Care.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastor, T., Zderic, I., Gehweiler, D. et al. Biomechanical analysis of recently released cephalomedullary nails for trochanteric femoral fracture fixation in a human cadaveric model. Arch Orthop Trauma Surg 142, 3787–3796 (2022). https://doi.org/10.1007/s00402-021-04239-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-021-04239-7

Keywords

Navigation