Skip to main content

Advertisement

Log in

Handheld computer-navigated constrained total knee arthroplasty for complex extra-articular deformities

  • Knee Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

The present study aimed to assess the postoperative alignment and clinical outcomes of patients with complex extra-articular deformities (EADs) undergoing computer-assisted surgery (CAS) for constrained total knee arthroplasty (TKA) with modular stem extensions.

Materials and methods

From May 2015 to July 2018, ten patients with EADs scheduled for constrained TKA were enrolled retrospectively. The preoperative average deviation from neutral (= 180°) mechanical axis was 15.3° (range of coronal alignment: 150.9° varus–202.9° valgus). Alignment was assessed using an accelerometer-based handheld CAS system. On long-leg films, the positions of the components and possible stems were analysed and templated preoperatively. The average follow-up was 3.3 years (range: 2.0–4.6 years).

Results

The postoperative mechanical axis was within ± 3.0° from neutral in nine patients. In all patients, the Knee Society score (KSS) and range of motion improved significantly. A constrained condylar and a rotating hinge prosthesis were used in five patients each. In eight patients, the 100-mm cementless stem that was preferred by the authors was found to be unusable for the femur or the tibia in the planning stage. For the femur, a cementless 100-mm stem was used in three, and a cemented 30-mm stem in five patients; a femoral stem was not usable in two patients. For the tibia, a cementless 100-mm stem was used in six, and a cemented 30-mm stem in two patients; a monoblock rotating hinge tibia was used in two patients.

Conclusions

Complex EADs were excellently managed during constrained TKA implantation using the handheld CAS system. Templating allowed the possible stem lengths to be identified and prevented anatomical conflict with the CAS-configured mechanical alignment. Limb alignment and function improved significantly after surgery. No intra- or postoperative complications occurred.

Level of evidence

Level IV, retrospective study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fang D, Ritter MA (2009) Malalignment: forewarned is forearmed. Orthopedics. https://doi.org/10.3928/01477447-20090728-29

    Article  PubMed  Google Scholar 

  2. Tsukeoka T, Tsuneizumi Y, Yoshino K (2019) An accelerometer-based navigation did not improve the femoral component positioning compared to a modified conventional technique of pre-operatively planned placement of intramedullary rod in total knee arthroplasty. Arch Orthop Trauma Surg 139:561–567. https://doi.org/10.1007/s00402-019-03147-1

    Article  PubMed  Google Scholar 

  3. Zhu M, Lindsay E, Keenan A, Monk P, Munro J (2020) The use of accelerometer-based navigation for coronal TKA alignment: a prospective, single surgeon comparative study. Arch Orthop Trauma Surg 140:1169–1174. https://doi.org/10.1007/s00402-019-03295-4

    Article  PubMed  Google Scholar 

  4. Klasan A, Putnis SE, Grasso S, Neri T, Coolican MR (2020) Conventional instruments are more accurate for measuring the depth of the tibial cut than computer-assisted surgery in total knee arthroplasty: a prospective study. Arch Orthop Trauma Surg 140:801–806. https://doi.org/10.1007/s00402-020-03403-9

    Article  PubMed  Google Scholar 

  5. Zahn RK, Graef F, Conrad JL, Renner L, Perka C, Hommel H (2020) Accuracy of tibial positioning in the frontal plane: a prospective study comparing conventional and innovative techniques in total knee arthroplasty. Arch Orthop Trauma Surg 140:793–800. https://doi.org/10.1007/s00402-020-03389-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Czurda T, Fennema P, Baumgartner M, Ritschl P (2010) The association between component malalignment and post-operative pain following navigation-assisted total knee arthroplasty: results of a cohort/nested case-control study. Knee Surg Sports Traumatol Arthrosc 18:863–869. https://doi.org/10.1007/s00167-009-0990-y

    Article  PubMed  Google Scholar 

  7. Longstaff LM, Sloan K, Stamp N, Scaddan M, Beaver R (2009) Good alignment after total knee arthroplasty leads to faster rehabilitation and better function. J Arthroplasty 24:570–578. https://doi.org/10.1016/j.arth.2008.03.002

    Article  PubMed  Google Scholar 

  8. Ritter MA, Faris PM, Keating EM, Meding JB (1994) Postoperative alignment of total knee replacement. Its effect on survival. Clin Orthop Relat Res 299:153–156

    Google Scholar 

  9. Rhee SJ, Seo CH, Suh JT (2013) Navigation-assisted total knee arthroplasty for patients with extra-articular deformity. Knee Surg Relat Res 25:194–201. https://doi.org/10.5792/ksrr.2013.25.4.194

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shao J, Zhang W, Jiang Y, Wang Q, Chen Y, Shen H, Zhang X (2012) Computer-navigated TKA for the treatment of osteoarthritis associated with extra-articular femoral deformity. Orthopedics 35:794–799. https://doi.org/10.3928/01477447-20120525-15

    Article  Google Scholar 

  11. Mullaji A, Shetty GM (2009) Computer-assisted total knee arthroplasty for arthritis with extra-articular deformity. J Arthroplasty 24:1164–1169. https://doi.org/10.1016/j.arth.2009.05.005

    Article  PubMed  Google Scholar 

  12. Matassi F, Cozzi Lepri A, Innocenti M, Zanna L, Civinini R, Innocenti M (2019) Total knee arthroplasty in patients with extra-articular deformity: restoration of mechanical alignment using accelerometer-based navigation system. J Arthroplasty 34:676–681. https://doi.org/10.1016/j.arth.2018.12.042

    Article  PubMed  Google Scholar 

  13. Liu Z, Pan X, Zhang X (2013) Total knee arthroplasty using navigation system for severe osteoarthritis with extra-articular deformity. Eur J Orthop Surg Traumatol 23:93–96. https://doi.org/10.1007/s00590-011-0912-9

    Article  PubMed  Google Scholar 

  14. Tani I, Nakano N, Takayama K, Ishida K, Kuroda R, Matsumoto T (2018) Navigated total knee arthroplasty for osteoarthritis with extra-articular deformity. Acta Ortop Bras 26:170–174. https://doi.org/10.1590/1413-785220182603178367

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bottros J, Klika AK, Lee HH, Polousky J, Barsoum WK (2008) The use of navigation in total knee arthroplasty for patients with extra-articular deformity. J Arthroplasty 23:74–78. https://doi.org/10.1016/j.arth.2007.01.021

    Article  PubMed  Google Scholar 

  16. Wang JW, Wang CJ (2002) Total knee arthroplasty for arthritis of the knee with extra-articular deformity. J Bone Jt Surg Am 84:1769–1774. https://doi.org/10.2106/00004623-200210000-00005

    Article  Google Scholar 

  17. Babazadeh S, Dowsey MM, Bingham RJ, Ek ET, Stoney JD, Choong PF (2013) The long leg radiograph is a reliable method of assessing alignment when compared to computer-assisted navigation and computer tomography. Knee 20:242–249. https://doi.org/10.1016/j.knee.2012.07.009

    Article  PubMed  Google Scholar 

  18. Chin PL, Yang KY, Yeo SJ, Lo NN (2005) Randomized control trial comparing radiographic total knee arthroplasty implant placement using computer navigation versus conventional technique. J Arthroplasty 20:618–626. https://doi.org/10.1016/j.arth.2005.04.004

    Article  PubMed  Google Scholar 

  19. Moo IH, Chen JYQ, Chau DHH, Tan SW, Lau ACK, Teo YS (2018) Similar radiological results with accelerometer-based navigation versus conventional technique in total knee arthroplasty. J Orthop Surg 26:2309499018772374. https://doi.org/10.1177/2309499018772374

    Article  Google Scholar 

  20. Paley D, Tetsworth K (1992) Mechanical axis deviation of the lower limbs. Preoperative planning of multiapical frontal plane angular and bowing deformities of the femur and tibia. Clin Orthop Relat Res 280:65–71

    Google Scholar 

  21. Yoo JH, Chang CB, Shin KS, Seong SC, Kim TK (2008) Anatomical references to assess the posterior tibial slope in total knee arthroplasty: a comparison of 5 anatomical axes. J Arthroplasty 23:586–592. https://doi.org/10.1016/j.arth.2007.05.006

    Article  PubMed  Google Scholar 

  22. Radler C, Kranzl A, Manner HM, Hoglinger M, Ganger R, Grill F (2010) Torsional profile versus gait analysis: consistency between the anatomic torsion and the resulting gait pattern in patients with rotational malalignment of the lower extremity. Gait Posture 32:405–410. https://doi.org/10.1016/j.gaitpost.2010.06.019

    Article  PubMed  Google Scholar 

  23. Baldini A, Anderson JA, Cerulli-Mariani P, Kalyvas J, Pavlov H, Sculco TP (2007) Patellofemoral evaluation after total knee arthroplasty. Validation of a new weight-bearing axial radiographic view. J Bone Jt Surg Am 89:1810–1817. https://doi.org/10.2106/JBJS.E.00432

    Article  Google Scholar 

  24. Reikeras O, Hoiseth A (1989) Torsion of the leg determined by computed tomography. Acta Orthop Scand 60:330–333. https://doi.org/10.3109/17453678909149288

    Article  CAS  PubMed  Google Scholar 

  25. Scuderi GR, Bourne RB, Noble PC, Benjamin JB, Lonner JH, Scott WN (2012) The new Knee Society Knee Scoring System. Clin Orthop Relat Res 470:3–19. https://doi.org/10.1007/s11999-011-2135-0

    Article  PubMed  Google Scholar 

  26. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  Google Scholar 

  27. Catani F, Digennaro V, Ensini A, Leardini A, Giannini S (2012) Navigation-assisted total knee arthroplasty in knees with osteoarthritis due to extra-articular deformity. Knee Surg Sports Traumatol Arthrosc 20:546–551. https://doi.org/10.1007/s00167-011-1602-1

    Article  PubMed  Google Scholar 

  28. Hazratwala K, Matthews B, Wilkinson M, Barroso-Rosa S (2016) Total knee arthroplasty in patients with extra-articular deformity. Arthroplasty Today 2:26–36. https://doi.org/10.1016/j.artd.2015.11.002

    Article  PubMed  PubMed Central  Google Scholar 

  29. Goh GS, Liow MH, Lim WS, Tay DK, Yeo SJ, Tan MH (2016) Accelerometer-based navigation is as accurate as optical computer navigation in restoring the joint line and mechanical axis after total knee arthroplasty: a prospective matched study. J Arthroplasty 31:92–97. https://doi.org/10.1016/j.arth.2015.06.048

    Article  PubMed  Google Scholar 

  30. Hsu AR, Kim JD, Bhatia S, Levine BR (2012) Effect of training level on accuracy of digital templating in primary total hip and knee arthroplasty. Orthopedics 35:179–183. https://doi.org/10.3928/01477447-20120123-15

    Article  Google Scholar 

  31. Kniesel B, Konstantinidis L, Hirschmuller A, Sudkamp N, Helwig P (2014) Digital templating in total knee and hip replacement: an analysis of planning accuracy. Int Orthop 38:733–739. https://doi.org/10.1007/s00264-013-2157-1

    Article  PubMed  Google Scholar 

  32. Oh S-M, Bin S-I, Kim J-Y, Lee B-S, Kim J-M (2020) Short knee radiographs can be inadequate for estimating TKA alignment in knees with bowing. Knee Surg Relat Res 32:9. https://doi.org/10.1186/s43019-019-0020-4

    Article  PubMed  PubMed Central  Google Scholar 

  33. Morgan-Jones R, Oussedik SI, Graichen H, Haddad FS (2015) Zonal fixation in revision total knee arthroplasty. Bone Jt J 97:147–149. https://doi.org/10.1302/0301-620x.97b2.34144

    Article  Google Scholar 

  34. Kang SG, Park CH, Song SJ (2018) Stem fixation in revision total knee arthroplasty: indications, stem dimensions, and fixation methods. Knee Surg Relat Res 30:187–192. https://doi.org/10.5792/ksrr.18.019

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wood GC, Naudie DD, MacDonald SJ, McCalden RW, Bourne RB (2009) Results of press-fit stems in revision knee arthroplasties. Clin Orthop Relat Res 467:810–817. https://doi.org/10.1007/s11999-008-0621-9

    Article  PubMed  Google Scholar 

  36. Patel AR, Barlow B, Ranawat AS (2015) Stem length in revision total knee arthroplasty. Curr Rev Musculoskelet Med 8:407–412. https://doi.org/10.1007/s12178-015-9297-4

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mabry TM, Vessely MB, Schleck CD, Harmsen WS, Berry DJ (2007) Revision total knee arthroplasty with modular cemented stems: long-term follow-up. J Arthroplasty 22:100–105. https://doi.org/10.1016/j.arth.2007.03.025

    Article  PubMed  Google Scholar 

  38. Lachiewicz PF, Soileau ES (2015) A 30-mm cemented stem extension provides adequate fixation of the tibial component in revision knee arthroplasty. Clin Orthop Relat Res 473:185–189. https://doi.org/10.1007/s11999-014-3529-6

    Article  PubMed  Google Scholar 

  39. Anderson JA, Baldini A, MacDonald JH, Tomek I, Pellicci PM, Sculco TP (2007) Constrained condylar knee without stem extensions for difficult primary total knee arthroplasty. J Knee Surg 20:195–198. https://doi.org/10.1055/s-0030-1248042

    Article  PubMed  Google Scholar 

  40. Samiezadeh S, Bougherara H, Abolghasemian M, D’Lima D, Backstein D (2019) Rotating hinge knee causes lower bone-implant interface stress compared to constrained condylar knee replacement. Knee Surg Sports Traumatol Arthrosc 27:1224–1231. https://doi.org/10.1007/s00167-018-5054-8

    Article  PubMed  Google Scholar 

  41. Hungerford DS (2009) Extra-articular deformity is always correctable intra-articularly: to the contrary. Orthopedics. https://doi.org/10.3928/01477447-20090728-23

    Article  PubMed  Google Scholar 

  42. Wolff AM, Hungerford DS, Pepe CL (1991) The effect of extraarticular varus and valgus deformity on total knee arthroplasty. Clin Orthop Relat Res 271:35–51

    Google Scholar 

  43. Lonner JH, Siliski JM, Lotke PA (2000) Simultaneous femoral osteotomy and total knee arthroplasty for treatment of osteoarthritis associated with severe extra-articular deformity. J Bone Jt Surg Am 82:342–348. https://doi.org/10.2106/00004623-200003000-00005

    Article  CAS  Google Scholar 

  44. Veltman ES, van Wensen RJA, Defoort KC, van Hellemondt GG, Wymenga AB (2017) Single-stage total knee arthroplasty and osteotomy as treatment of secondary osteoarthritis with severe coronal deviation of joint surface due to extra-articular deformity. Knee Surg Sports Traumatol Arthrosc 25:2835–2840. https://doi.org/10.1007/s00167-015-3889-9

    Article  PubMed  Google Scholar 

  45. Rajgopal A, Vasdev A, Dahiya V, Tyagi VC, Gupta H (2013) Total knee arthroplasty in extra articular deformities: a series of 36 knees. Indian J Orthop 47:35–39. https://doi.org/10.4103/0019-5413.106893

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xiao-Gang Z, Shahzad K, Li C (2012) One-stage total knee arthroplasty for patients with osteoarthritis of the knee and extra-articular deformity. Int Orthop 36:2457–2463. https://doi.org/10.1007/s00264-012-1695-2

    Article  PubMed  PubMed Central  Google Scholar 

  47. Thienpont E, Paternostre F, Pietsch M, Hafez M, Howell S (2013) Total knee arthroplasty with patient-specific instruments improves function and restores limb alignment in patients with extra-articular deformity. Knee 20:407–411. https://doi.org/10.1016/j.knee.2013.07.001

    Article  PubMed  Google Scholar 

  48. Sodhi N, Khlopas A, Ehiorobo JO, Condrey C, Marchand K, Marchand RC, Hepinstall MS, Mont MA (2019) Robotic-assisted total knee arthroplasty in the presence of extra-articular deformity. Surg Technol Int 34:497–502

    PubMed  Google Scholar 

  49. Kizaki K, Shanmugaraj A, Yamashita F, Simunovic N, Duong A, Khanna V, Ayeni OR (2019) Total knee arthroplasty using patient-specific instrumentation for osteoarthritis of the knee: a meta-analysis. BMC Musculoskelet Disord. https://doi.org/10.1186/s12891-019-2940-2

    Article  PubMed  PubMed Central  Google Scholar 

  50. Marchand RC, Sodhi N, Khlopas A, Sultan AA, Higuera CA, Stearns KL, Mont MA (2018) Coronal correction for severe deformity using robotic-assisted total knee arthroplasty. J Knee Surg 31:2–5. https://doi.org/10.1055/s-0037-1608840

    Article  PubMed  Google Scholar 

  51. Jones CW, Jerabek SA (2018) Current role of computer navigation in total knee arthroplasty. J Arthroplasty 33:1989–1993. https://doi.org/10.1016/j.arth.2018.01.027

    Article  PubMed  Google Scholar 

Download references

Funding

No sources of funding to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pietsch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding this manuscript. Outside the manuscript, one or more of the authors are consultants of Zimmer Biomet.

Ethical approval

All investigations were conducted in conformity with ethical principles of research, and intuitional approval of the human protocol for this investigation was obtained.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pietsch, M., Hochegger, M., Djahani, O. et al. Handheld computer-navigated constrained total knee arthroplasty for complex extra-articular deformities. Arch Orthop Trauma Surg 141, 2245–2254 (2021). https://doi.org/10.1007/s00402-021-04053-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-021-04053-1

Keywords

Navigation