Skip to main content
Log in

Degeneration of the articular disc in the human triangular fibrocartilage complex

  • Handsurgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Traumatic injuries of the triangular fibrocartilage complex (TFCC) are frequent reasons for ulnar wrist pain. The assessment of the extent of articular disc (AD) degeneration is important for the differentiation of acute injuries versus chronic lesions.

Materials and methods

The AD of the TFCC of eleven human cadaver wrists was dissected. Degeneration was analyzed according to the grading of Krenn et al. Hematoxylin–eosin was used to determine the tissue morphology. Degeneration was evaluated using the staining intensity of alcian blue, the immunohistochemistry of the proteoglycan versican and the immunoreactivity of NITEGE, an aggrecan fragment.

Results

The staining homogeneity of HE decreased with higher degeneration of the AD and basophilic tissue areas were more frequently seen. Two specimens were characterized as degeneration grade 1, five specimens as grade 2, and four specimens as grade 3, respectively. Staining intensity of alcian blue increased with higher degeneration grade of the specimens. Immunoreactivity for NITEGE was detected around tissue fissures and perforations as well as matrix splits. Immunoreactivity for versican was found concentrated in the tissue around matrix fissures and lesions as well as loose connective tissue at the ulnar border of the AD. Specimens with degeneration grade 2 had the strongest immunoreactivity of NITEGE and versican. Cell clusters were observed in specimens with degeneration grade 2 and 3, which were stained by alcian blue and immunoreactive for NITEGE and versican. Increasing age of the cadaver wrists correlated with a higher degree of degeneration (p < 0.0001, r = 0.68).

Conclusions

The fibrocartilage of degenerated ADs contains NITEGE and versican. The amount of the immunoreactivity of these markers allows the differentiation of degenerative changes into three grades. The degeneration of the AD increases with age and emphasizes its important mechanical function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Articular disc

HE:

Hematoxylin-eosin

NITEGE:

Hexapeptide of the amino acids: asparagine (N), isoleucine (I), threonine (T), glutamic acid (E), glycine (G) and glutamic acid (E); G1 fragment of the proteoglycan aggrecan

OA:

Osteoarthritis

PBS:

Phosphate buffer saline

TFCC:

Triangular fibrocartilage complex

References

  1. Palmer AK, Werner FW (1984) Biomechanics of the distal radioulnar joint. Clin Orthop Relat Res 187:26–35

  2. Palmer AK, Werner FW (1981) The triangular fibrocartilage complex of the wrist—Anatomy and function. J Hand Surg Am 6:153–162. https://doi.org/10.1016/S0363-5023(81)80170-0

    Article  CAS  PubMed  Google Scholar 

  3. Semisch M, Hagert E, Garcia-Elias M et al (2016) Histological assessment of the triangular fibrocartilage complex. J Hand Surg Eur 41:527–533. https://doi.org/10.1177/1753193415618391

    Article  CAS  Google Scholar 

  4. Rein S, Semisch M, Garcia-Elias M et al (2015) Immunohistochemical mapping of sensory nerve endings in the human triangular fibrocartilage complex. Clin Orthop Relat Res 473:3245–3253. https://doi.org/10.1007/s11999-015-4357-z

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nakamura T, Yabe Y (2000) Histological anatomy of the triangular fibrocartilage complex of the human wrist. Ann Anat 182:567–572 (In Process Citation)

    Article  CAS  Google Scholar 

  6. Benjamin M, Evans EJ, Pemberton DJ (1990) Histological studies on the triangular fibrocartilage complex of the wrist. J Anat 172:59–67

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Palmer AK (1989) Triangular fibrocartilage complex lesions: a classification. J Hand Surg Am 14:594–606. https://doi.org/10.1016/0363-5023(89)90174-3

    Article  CAS  PubMed  Google Scholar 

  8. Mikić ZD (1978) Age changes in the triangular fibrocartilage of the wrist joint. J Anat 126:367–384

    PubMed  PubMed Central  Google Scholar 

  9. Unglaub F, Hahn P, Wolf E et al (2007) Degeneration process of symptomatic central tears in the triangular fibrocartilage. Ann Plast Surg 59:515–519. https://doi.org/10.1097/01.sap.0000258958.46054.e6

    Article  CAS  PubMed  Google Scholar 

  10. Löw S, Erne H, Pillukat T et al (2017) Diagnosing central lesions of the triangular fibrocartilage as traumatic or degenerative: a review of clinical accuracy. J Hand Surg Eur 42:357–362. https://doi.org/10.1177/1753193416684658

    Article  Google Scholar 

  11. Hempfling H (2008) Begutachtung des Diskusschadens am Handgelenk. Trauma und Berufskrankheit 10:66–76. https://doi.org/10.1007/s10039-008-1348-2

    Article  Google Scholar 

  12. Krenn V, Knöss P, Rüther W et al (2010) Meniskusdegenerationsscore und NITEGE-Expression. Immunhistochemischer NITEGE-Nachweis in der schwergradigen Meniskusdegeneration. Orthopäde 39:475–485. https://doi.org/10.1007/s00132-010-1606-4

    Article  CAS  PubMed  Google Scholar 

  13. Krenn V, Kurz B, Krukemeyer MG et al (2010) Histopathologischer degenerations-score des faserknorpels: Low-grade- und high-grade-meniskusdegeneration. Z Rheumatol 69:644–652. https://doi.org/10.1007/s00393-010-0609-1

    Article  CAS  PubMed  Google Scholar 

  14. Steedman H (1950) Alcian blue 8GS: a new stain for mucin. Quart J Micr Sci 91:477–479

    CAS  Google Scholar 

  15. Haddock N (1948) Alcian blue, a new phthalocyanine dyestuff. Research 1:685–689

    CAS  PubMed  Google Scholar 

  16. Fagan C, Dapson RW, Horobin RW, Kiernan JA (2020) Revised tests and standards for Biological Stain Commission certification of alcian blue dyes. Biotech Histochem 95:333–340. https://doi.org/10.1080/10520295.2019.1699163

    Article  CAS  PubMed  Google Scholar 

  17. Matsumoto K, Kamiya N, Suwan K et al (2006) Identification and characterization of versican/PG-M aggregates in cartilage. J Biol Chem 281:18257–18263. https://doi.org/10.1074/jbc.M510330200

    Article  CAS  PubMed  Google Scholar 

  18. Grover J, Roughley PJ (1993) Versican gene expression in human articular cartilage and comparison of mRNA splicing variation with aggrecan. Biochem J 291:361–367

    Article  CAS  Google Scholar 

  19. Milz S, Sicking B, Sprecher CM et al (2007) An immunohistochemical study of the triangular fibrocartilage complex of the wrist: regional variations in cartilage phenotype. J Anat 211:1–7. https://doi.org/10.1111/j.1469-7580.2007.00742.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roughley P, Martens D, Rantakokko J et al (2006) The involvement of aggrecan polymorphism in degeneration of human intervertebral disc and articular cartilage. Eur Cells Mater 11:1–7. https://doi.org/10.22203/eCM.v011a01

    Article  CAS  Google Scholar 

  21. Knoess P, Jakobs M, Otto M et al (2011) NITEGE-expression in meniscal matrix. a new, immunohistochemical marker of meniscal-tissue degeneration. J Orthop Trauma 1:1–7. https://doi.org/10.4303/jot/235377

    Article  Google Scholar 

  22. Sandy JD, Plaasl AHK, Koob TJ (1995) Pathways of aggrecan processing in joint tissues. Implication for disease mechanism and monitoring. Acta Orthop Scand 66:26–32

    Article  Google Scholar 

  23. Lark MW, Bayne EK, Flanagan J et al (1997) Aggrecan degradation in human cartilage. J Clin Invest 100:93–106

    Article  CAS  Google Scholar 

  24. Buckwalter J, Mankin H (1997) Instructional course lecture. The American academy of orthopaedic surgeons-articular cartilage. Part II: degeneration and osteoarthrosis, repair, regeneration and transplantation. J Bone Jt Surg Am 79:612–632

    Article  Google Scholar 

  25. Palmer A, Werner F, Glisson R, Murphy DJ (1988) Partial excision of the triangular fibrocartilage complex. J Hand Surg Am 13:391–394

    Article  CAS  Google Scholar 

  26. Sun Y, Mauerhan D, Kneisl J et al (2012) Histological examination of collagen and proteoglycan changes in osteoarthritic menisci. Open Rheumatol J 6:24–32. https://doi.org/10.2174/1874312901206010024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brittberg M, Winalski C (2003) Evaluation of cartilage injuries and cartilage repair. J Bone Jt Surg Am 85:58–68

    Article  Google Scholar 

  28. Unglaub F, Fellenberg J, Germann G et al (2007) Detection of apoptotic cartilage cells in symptomatic central tears of the triangular fibrocartilage. J Hand Surg Am 32:618–622. https://doi.org/10.1016/j.jhsa.2007.02.023

    Article  PubMed  Google Scholar 

  29. Fisseler-Eckhoff A, Müller K (2011) Histopathologische Begutachtung des Meniskus. Pathologe 32:220–227

    Article  CAS  Google Scholar 

  30. López-Franco M, López-Franco O, Murciano-Antón MA et al (2011) An experimental study of COMP (cartilage oligomeric matrix protein) in the rabbit menisci. Arch Orthop Trauma Surg 131:1167–1176. https://doi.org/10.1007/s00402-011-1332-3

    Article  PubMed  Google Scholar 

  31. Fosang AJ, Last K, Stanton H et al (2000) Generation and novel distribution of matrix metalloproteinase-derived aggrecan fragments in porcine cartilage explants. J Biol Chem 275:33027–33037. https://doi.org/10.1074/jbc.M910207199

    Article  CAS  PubMed  Google Scholar 

  32. Maitland M, Arsenault A (1989) Freeze-substitution staining of rat growth plate cartilage with alcian blue for electron microscopic study of proteoglycans. J Histochem Cytochem 37:383–387. https://doi.org/10.1177/37.3.2465336

    Article  CAS  PubMed  Google Scholar 

  33. Adams ME, Billingham MEJ, Muir H (1983) The glycosaminoglycans in menisci in experimental and natural osteoarthritis. Arthritis Rheum 26:69–76. https://doi.org/10.1002/art.1780260111

    Article  CAS  PubMed  Google Scholar 

  34. Hardingham T (2008) Extracellular matrix and pathogenic mechanisms in osteoarthritis. Curr Rheumatol Rep 10:30–36. https://doi.org/10.1007/s11926-008-0006-9

    Article  CAS  PubMed  Google Scholar 

  35. Sandy JD, Westling J, Kenagy RD et al (2001) Versican V1 proteolysis in human aorta in vivo occurs at the Glu 441-Ala442 bond, a site that is cleaved by recombinant ADAMTS-1 and ADAMTS-4. J Biol Chem 276:13372–13378. https://doi.org/10.1074/jbc.M009737200

    Article  CAS  PubMed  Google Scholar 

  36. Unglaub F, Thomas SB, Kroeber MW et al (2009) Apoptotic pathways in degenerative disk lesions in the wrist. Arthroscopy 25:1380–1386. https://doi.org/10.1016/j.arthro.2009.04.071

    Article  PubMed  Google Scholar 

  37. Unglaub F, Wolf MB, Thome MA et al (2008) Correlation of ulnar length and apoptotic cell death in degenerative lesions of the triangular fibrocartilage. Arthroscopy 24:299–304. https://doi.org/10.1016/j.arthro.2007.09.006

    Article  PubMed  Google Scholar 

  38. Möldner M, Unglaub F, Hahn P et al (2015) Functionality after arthroscopic debridement of central triangular fibrocartilage tears with central perforations. J Hand Surg Am 40:252-258.e2. https://doi.org/10.1016/j.jhsa.2014.10.056

    Article  PubMed  Google Scholar 

  39. Hempfling H, Krenn V (2016) Schadenbeurteilung am Bewegungssystem; Band 2: Meniskus, Diskus, Bandscheiben, Labrum, Ligamente, Sehnen, 1st edn. DeGruyter, Berlin

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank the following colleagues for their support: Suzanne Manthey, Dorothea Liebeheim, Thomas Albrecht, Florian Hesse, Manuel Llusá Pérez, MD, PhD and Hans Zwipp, MD, PhD.

Funding

This study was financially supported by the Center for Sports Research (CIF), Stockholm, Sweden through the contribution of funds for the purchase of immunohistochemical markers (funding number: CIF Dnr 1024/11).

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantive intellectual contributions to this study, in conception and design (SR, VK EH, MGE, AL, MS), acquisition of data (SR, EH, MGE, AL), analysis and interpretation of data (SR, VK EH, MGE, AL, MS), drafting and revising the manuscript (SR, VK EH, MGE, AL, TK, MS), as well as final approval of the version to be submitted (SR, VK EH, MGE, AL, TK, MS).

Corresponding author

Correspondence to Susanne Rein.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. All authors disclose any financial and personal relationships with other people or organizations that could potentially and inappropriately influence this study and conclusions. All authors declared no potential conflicts of interest with respect to the research, authorship, and/ or publication of this article.

Ethical approval

The local ethical committee of the Medical Faculty of the Technical University Dresden approved this study under the processing number: EK 300082013.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rein, S., Krenn, V., Hagert, E. et al. Degeneration of the articular disc in the human triangular fibrocartilage complex. Arch Orthop Trauma Surg 141, 699–708 (2021). https://doi.org/10.1007/s00402-021-03795-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-021-03795-2

Keywords

Navigation