Skip to main content

Advertisement

Log in

Graft failure versus graft fixation in ACL reconstruction: histological and immunohistochemical studies in rabbits

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

The causes of graft failure after anterior cruciate ligament (ACL) reconstruction are multifactorial including the methods of graft fixation. The purpose of this study was to examine the ACL graft failure in three different methods of graft fixations including interference screw fixation, suture-post fixation and combined interference screw and suture-post fixation. We hypothesized that the fixation method after ACL reconstruction can affect the graft healing in tibial tunnel. Eighteen New Zealand white rabbits were categorized into three groups according to the method of fixation in unilateral ACL reconstruction with long digital extensor autograft. Histological examination demonstrated that the combined fixation and suture-post fixation groups showed significantly better integration between tendon and bone (P = 0.04). In immunohistochemical analysis, the combined fixation and suture-post fixation groups showed significantly higher BMP-2 and VEGF expressions than interference screw (P < 0.01). The tendon–bone healing after ACL reconstruction was affected by the method of graft fixation. Combined fixation with interference screw and suture-post reduced graft-tunnel micromotion and improved the graft healing in tibial tunnel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Andersson AC (1993) Knee laxity and function after conservative treatment of anterior cruciate ligament injuries. A prospective study. Int J Sports Med 14:150–153

    Article  PubMed  CAS  Google Scholar 

  2. Church S, Keating JF (2005) Reconstruction of the anterior cruciate ligament: timing of surgery and the incidence of meniscal tears and degenerative change. J Bone Joint Surg Br 87:1639–1642

    PubMed  CAS  Google Scholar 

  3. Foster A, Butcher C, Turner PG (2005) Changes in arthroscopic findings in the anterior cruciate ligament deficient knee prior to reconstructive surgery. Knee 12:33–35

    Article  PubMed  CAS  Google Scholar 

  4. Salmon LJ, Russell VJ, Refshauge K, Kader D, Connolly C, Linklater J et al (2006) Long-term outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft: minimum 13-year review. Am J Sports Med 34:721–732

    Article  PubMed  Google Scholar 

  5. Carson EW, Anisko EM, Restrepo C, Panariello RA, O’Brien SJ, Warren RF (2004) Revision anterior cruciate ligament reconstruction: etiology of failures and clinical results. J Knee Surg 17:127–132

    PubMed  Google Scholar 

  6. Siebold R, Buelow JU, Boes L, Ellermann A (2002) Primary- and revision-reconstruction of the anterior cruciate ligament with allografts: a retrospective study including 325 patients. Zentralbl Chir 127:850–854

    Article  PubMed  CAS  Google Scholar 

  7. Beynnon BD, Johnson RJ, Toyama H, Renstrom PA, Arms SW, Fischer RA (1994) The relationship between anterior–posterior knee laxity and the structural properties of the patellar tendon graft. A study in canines. Am J Sports Med 22:812–820

    Article  PubMed  CAS  Google Scholar 

  8. Fleming BC, Spindler KP, Palmer MP, Magarian EM, Murray MM (2009) Collagen-platelet composites improve the biomechanical properties of healing anterior cruciate ligament grafts in a porcine model. Am J Sports Med 37:1554–1563

    Article  PubMed  Google Scholar 

  9. Drogset JO, Grontvedt T, Robak OR, Molster A, Viset AT, Engebretsen L (2006) A sixteen-year follow-up of three operative techniques for the treatment of acute ruptures of the anterior cruciate ligament. J Bone Joint Surg Am 88:944–952

    Article  PubMed  Google Scholar 

  10. Sommerlath K, Lysholm J, Gillquist J (1991) The long-term course after treatment of acute anterior cruciate ligament ruptures. A 9 to 16 year followup. Am J Sports Med 19:156–162

    Article  PubMed  CAS  Google Scholar 

  11. Ait Si Selmi T, Fithian D, Neyret P (2006) The evolution of osteoarthritis in 103 patients with ACL reconstruction at 17 years follow-up. Knee 13:353–358

    Article  PubMed  CAS  Google Scholar 

  12. Daniel DM, Stone ML, Dobson BE, Fithian DC, Rossman DJ, Kaufman KR (1994) Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med 22:632–644

    Article  PubMed  CAS  Google Scholar 

  13. Goradia VK, Rochat MC, Grana WA, Rohrer MD, Prasad HS (2000) Tendon-to-bone healing of a semitendinosus tendon autograft used for ACL reconstruction in a sheep model. Am J Knee Surg 13:143–151

    PubMed  CAS  Google Scholar 

  14. Papageorgiou CD, Ma CB, Abramowitch SD, Clineff TD, Woo SL (2001) A multidisciplinary study of the healing of an intraarticular anterior cruciate ligament graft in a goat model. Am J Sports Med 29:620–626

    PubMed  CAS  Google Scholar 

  15. Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF (1993) Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg Am 75:1795–1803

    PubMed  CAS  Google Scholar 

  16. Weiler A, Peine R, Pashmineh-Azar A, Abel C, Sudkamp NP, Hoffmann RF (2002) Tendon healing in a bone tunnel. Part I: biomechanical results after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy 18:113–123

    Article  PubMed  Google Scholar 

  17. Weiler A, Hoffmann RF, Bail HJ, Rehm O, Sudkamp NP (2002) Tendon healing in a bone tunnel. Part II: histologic analysis after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy 18:124–135

    Article  PubMed  Google Scholar 

  18. Park MJ, Lee MC, Seong SC (2001) A comparative study of the healing of tendon autograft and tendon–bone autograft using patellar tendon in rabbits. Int Orthop 25:35–39

    Article  PubMed  CAS  Google Scholar 

  19. Brown CH Jr, Wilson DR, Hecker AT, Ferragamo M (2004) Graft-bone motion and tensile properties of hamstring and patellar tendon anterior cruciate ligament femoral graft fixation under cyclic loading. Arthroscopy 20:922–935

    PubMed  Google Scholar 

  20. Chen NC, Brand JC Jr, Brown CH Jr (2007) Biomechanics of intratunnel anterior cruciate ligament graft fixation. Clin Sports Med 26:695–714

    Article  PubMed  Google Scholar 

  21. Gerich TG, Cassim A, Lattermann C, Lobenhoffer HP (1997) Pullout strength of tibial graft fixation in anterior cruciate ligament replacement with a patellar tendon graft: interference screw versus staple fixation in human knees. Knee Surg Sports Traumatol Arthrosc 5:84–88

    Article  PubMed  CAS  Google Scholar 

  22. Oh YH, Namkoong S, Strauss EJ, Ishak C, Hecker AT, Jazrawi LM et al (2006) Hybrid femoral fixation of soft-tissue grafts in anterior cruciate ligament reconstruction using the EndoButton CL and bioabsorbable interference screws: a biomechanical study. Arthroscopy 22:1218–1224

    Article  PubMed  Google Scholar 

  23. Zantop T, Ruemmler M, Welbers B, Langer M, Weimann A, Petersen W (2005) Cyclic loading comparison between biodegradable interference screw fixation and biodegradable double cross-pin fixation of human bone-patellar tendon–bone grafts. Arthroscopy 21:934–941

    Article  PubMed  Google Scholar 

  24. Harilainen A, Sandelin J (2009) A prospective comparison of 3 hamstring ACL fixation devices–Rigidfix, BioScrew, and Intrafix–randomized into 4 groups with 2 years of follow-up. Am J Sports Med 37:699–706

    Article  PubMed  Google Scholar 

  25. Harilainen A, Linko E, Sandelin J (2006) Randomized prospective study of ACL reconstruction with interference screw fixation in patellar tendon auto grafts versus femoral metal plate suspension and tibial post fixation in hamstring tendon auto grafts: 5-year clinical and radiological follow-up results. Knee Surg Sports Traumatol Arthrosc 14:517–528

    Article  PubMed  Google Scholar 

  26. Capuano L, Hardy P, Longo UG, Denaro V, Maffulli N (2008) No difference in clinical results between femoral transfixation and bio-interference screw fixation in hamstring tendon ACL reconstruction. A preliminary study. Knee 15:174–179

    Article  PubMed  Google Scholar 

  27. Rose T, Hepp P, Venus J, Stockmar C, Josten C, Lill H (2006) Prospective randomized clinical comparison of femoral transfixation versus bioscrew fixation in hamstring tendon ACL reconstruction–a preliminary report. Knee Surg Sports Traumatol Arthrosc 14:730–738

    Article  PubMed  Google Scholar 

  28. Anderson K, Seneviratne AM, Izawa K, Atkinson BL, Potter HG, Rodeo SA (2001) Augmentation of tendon healing in an intraarticular bone tunnel with use of a bone growth factor. Am J Sports Med 29:689–698

    PubMed  CAS  Google Scholar 

  29. Andreassen TT, Fledelius C, Ejersted C, Oxlund H (2001) Increases in callus formation and mechanical strength of healing fractures in old rats treated with parathyroid hormone. Acta Orthop Scand 72:304–307

    Article  PubMed  CAS  Google Scholar 

  30. Hurley MM (1996) Fibroblast growth factor and vascular endothelial cell growth factor families. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, San Diego, pp 627–645

    Google Scholar 

  31. Tetsumura S, Fujita A, Nakajima M, Abe M (2006) Biomechanical comparison of different fixation methods on the tibial side in anterior cruciate ligament reconstruction: a biomechanical study in porcine tibial bone. J Orthop Sci 11:278–282

    Article  PubMed  Google Scholar 

  32. Au AG, Otto DD, Raso VJ, Amirfazli A (2005) Investigation of a hybrid method of soft tissue graft fixation for anterior cruciate ligament reconstruction. Knee 12:149–153

    Article  PubMed  Google Scholar 

  33. Madsen R RR, Voor M, Roberts C, Tillett E (2001) Hamstring graft fixation for anterior cruciate ligament reconstruction. Comparison of biodegradable interference screw alone and combination of interference screw and Endobutton. Presented at 27th Annual Meeting of American Orthopaedic Society of Sports Medicine, Keystone, CO

  34. Shelbourne KD, Nitz P (1990) Accelerated rehabilitation after anterior cruciate ligament reconstruction. Am J Sports Med 18:292–299

    Article  PubMed  CAS  Google Scholar 

  35. Kohno T, Ishibashi Y, Tsuda E, Kusumi T, Tanaka M, Toh S (2007) Immunohistochemical demonstration of growth factors at the tendon–bone interface in anterior cruciate ligament reconstruction using a rabbit model. J Orthop Sci 12:67–73

    Article  PubMed  CAS  Google Scholar 

  36. Sim JA, Kwak JH, Yang SH, Lee BK (2009) Comparative biomechanical study of the ligament plate and other fixation devices in ACL reconstruction. Int Orthop 33:1269–1274

    Article  PubMed  Google Scholar 

  37. Scheffler SU, Sudkamp NP, Gockenjan A, Hoffmann RF, Weiler A (2002) Biomechanical comparison of hamstring and patellar tendon graft anterior cruciate ligament reconstruction techniques: the impact of fixation level and fixation method under cyclic loading. Arthroscopy 18:304–315

    Article  PubMed  Google Scholar 

  38. Weimann A, Rodieck M, Zantop T, Hassenpflug J, Petersen W (2005) Primary stability of hamstring graft fixation with biodegradable suspension versus interference screws. Arthroscopy 21:266–274

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funds were received in total or partial support for the research presented in this article. The funding source was the National Science Council (NSC-100-2314-B-182A-006).

Conflict of interest

None declared, with any funds received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Jen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, SL., Wang, CJ. Graft failure versus graft fixation in ACL reconstruction: histological and immunohistochemical studies in rabbits. Arch Orthop Trauma Surg 133, 1197–1202 (2013). https://doi.org/10.1007/s00402-013-1790-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-013-1790-x

Keywords

Navigation