Skip to main content

Advertisement

Log in

Supplemental bio-tenodesis improves tibialis anterior allograft yield load in extremely low density tibiae

  • Arthroscopy and Sports Medicine
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Improved soft tissue tendon graft mechanical properties have led to their increased use for anterior cruciate ligament (ACL) reconstruction. Because they do not have an osseous component; however, there are greater concerns regarding tibial graft slippage during early postoperative rehabilitation and activities of daily living, particularly in patients with poor bone mineral density (BMD), such as older patients, women, smokers, and patients undergoing revision ACL reconstruction surgery.

Methods

This in vitro biomechanical study attempted to determine the effectiveness of supplemental ACL graft fixation in low BMD tibiae. Eight paired knees (16 specimens) were harvested from female cadavers (mean age = 76, range = 60–88 years). Tibiae were assigned to either a combination bioabsorbable interference screw, bio-tenodesis screw group (Group 1, n = 8, apparent BMD = 0.44 ± 0.13 g/cm2) or a bioabsorbable interference screw group (Group 2, n = 8, apparent BMD = 0.44 ± 0.14 g/cm2). Double-strand (single loop) tibialis anterior tendon allografts were fixed in matched diameter tibial tunnels. Using a custom 6° of freedom jig, potted constructs were mounted on to a servo hydraulic device with the axial loading force aligned directly with the tibial tunnel. Constructs underwent progressive cyclic tensile loading from 10 to 150 N with a 25 N load increase every 20 cycles. This was followed by yield load to failure testing (20 mm/min).

Results

Groups did not display displacement differences during progressive cyclic loading. Group 1 (312.7 ± 67.5 N) displayed 25% greater yield load at failure than Group 2 (235.0 ± 47.6 N), P = 0.045. Both groups displayed fixation levels well below the previously reported minimal safe threshold estimate for early unrestricted weight bearing, accelerated rehabilitation and activities of daily living.

Conclusion

Supplemental bio-tenodesis fixation may improve early tibial-soft tissue tendon graft fixation in patients that have poor tibial BMD, but study results suggest that both methods may require weightbearing, rehabilitation, and activity of daily living restrictions during the early postoperative period to prevent graft slippage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sievanen H, Kannus P, Heinonen A, Oja P, Vuori I (1994) Bone mineral density and muscle strength of lower extremities after long-term strength training, subsequent knee ligament injury and rehabilitation: a unique 2-year follow-up of a 26-year-old female student. Bone 15:85–90

    Article  PubMed  CAS  Google Scholar 

  2. Nyland J, Fisher B, Brand E, Krupp R, Caborn DN (2010) Osseous deficits after anterior cruciate ligament injury and reconstruction: a systematic review with suggestions to improve osseous homeostasis. Arthroscopy 26:1248–1257

    Article  PubMed  Google Scholar 

  3. Andersson SM, Nilsson BE (1979) Changes in bone mineral content following ligamentous knee injuries. Med Sci Sports 11:351–353

    Article  PubMed  CAS  Google Scholar 

  4. Leppala J, Kannus P, Natri A, Pasanen M, Sievanen H, Vuori I, Jarvinen M (1999) Effect of anterior cruciate ligament injury of the knee on bone mineral density of the spine and affected lower extremity: a prospective one-year follow-up study. Calcif Tissue Int 64:357–363

    Article  PubMed  CAS  Google Scholar 

  5. Kannus P, Sievanen H, Jarvinen M, Heinonen A, Oja P, Vuori I (1992) A cruciate ligament injury produces considerable permanent osteoporosis in the affected knee. J Bone Miner Res 7:1429–1434

    Article  PubMed  CAS  Google Scholar 

  6. Klein SA, Nyland J, Caborn DN, Kocabey Y, Nawab A (2005) Comparison of volumetric bone mineral density in the tibial region of interest for ACL reconstruction. Surg Radiol Anat 27:372–376

    Article  PubMed  Google Scholar 

  7. Vuori I, Heinonen A, Sievanen H, Kannus M, Pasanen M, Oja P (1994) Effects of unilateral strength training and detraining on bone mineral density and content in young women: a study of mechanical loading and deloading on human bones. Calcif Tissue Int 55:59–67

    Article  PubMed  CAS  Google Scholar 

  8. Bailey SB, Grover DM, Howell SM, Hull ML (2004) Foam-reinforced elderly human tibia approximates young human tibia better than porcine tibia. Am J Sports Med 32:755–764

    Article  PubMed  Google Scholar 

  9. Klein SA, Nyland J, Kocabey Y, Wozniak T, Nawab A, Caborn DN (2004) Tendon graft fixation in ACL reconstruction: in vitro evaluation of bioabsorbable tenodesis screw. Acta Orthop Scand 75:84–88

    Article  PubMed  Google Scholar 

  10. Kuechle DK, Pearson SE, Beach WR, Freeman EL, Pawlowski DF, Whipple TL, Caspari Dagger RB, Meyers JF (2002) Allograft anterior cruciate ligament reconstruction in patients over 40 years of age. Arthroscopy 18:845–853

    Article  PubMed  Google Scholar 

  11. Dahm DL, Wulf CA, Dajani KA, Dobbs RE, Levy BA, Stuart MA (2008) Reconstruction of the anterior cruciate ligament in patients over 50 years. J Bone Joint Surg Br 90:1446–1450

    Article  PubMed  CAS  Google Scholar 

  12. Arbuthnot JE, Brink RB (2010) The role of anterior cruciate ligament reconstruction in the older patients, 55 years or above. Knee Surg Sports Traumatol Arthrosc 18:73–78

    Article  PubMed  Google Scholar 

  13. Marquass B, Hepp P, Engel T, Dusing T, Lill H, Josten C (2007) The use of hamstrings in anterior cruciate ligament reconstruction in patients over 40 years. Arch Orthop Trauma Surg 127:835–843

    Article  PubMed  Google Scholar 

  14. Osti L, Papalia R, Del Buono A, Leonardi F, Denaro V, Maffulli N (2011) Surgery for ACL deficiency in patients over 50. Knee Surg Sports Traumatol Arthrosc 19:412–417

    Article  PubMed  Google Scholar 

  15. Plancher KD, Steadman JR, Briggs KK, Hutton KS (1998) Reconstruction of the anterior cruciate ligament in patients who are at least forty years old. A long-term follow-up and outcome study. J Bone Joint Surg Am 80:184–197

    Article  PubMed  CAS  Google Scholar 

  16. Trojani C, Sane J-C, Coste J-S, Boileau P (2009) Four-strand hamstring tendon autograft for ACL reconstruction in patients aged 50 years or older. Orthop Traumatol Surg Res 95:22–27

    Article  PubMed  CAS  Google Scholar 

  17. Viola R, Vianello R (1999) Intra-articular ACL reconstruction in the over-40-year-old patient. Knee Surg Sports Traumatol Arthrosc 7:25–28

    Article  PubMed  CAS  Google Scholar 

  18. Haut Donahue TL, Howell SM, Hull ML, Gregersen C (2002) A biomechanical evaluation of anterior and posterior tibialis tendons as suitable single-loop anterior cruciate ligament grafts. Arthroscopy 18:589–597

    Article  PubMed  Google Scholar 

  19. Lu Y, Markel MD, Nemke B, Wynn S, Graf B (2009) Comparison of single- versus double-tunnel tendon-to-bone healing in an ovine model: a biomechanical and histological analysis. Am J Sports Med 37:512–517

    Article  PubMed  Google Scholar 

  20. Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF (1993) Tendon-healing in a bone tunnel: a biomechanical and histological study in the dog. J Bone Joint Surg Am 75:1795–1803

    PubMed  CAS  Google Scholar 

  21. Scranton PE, Lanzer WL, Ferguson MS, Kirkman TR, Pflaster DS (1998) Mechanisms of anterior cruciate ligament neovascularization and ligamentization. Arthroscopy 14:702–716

    Article  PubMed  Google Scholar 

  22. Scheffler SU, Schmidt T, Gangey I, Dustmann M, Unterhauser F, Weiler A (2008) Fresh-frozen free-tendon allografts versus autografts in anterior cruciate ligament reconstruction: delayed remodeling and inferior mechanical function during long-term healing in sheep. Arthroscopy 24:448–458

    Article  PubMed  Google Scholar 

  23. Brand JC Jr, Pienkowski D, Steenlage E, Hamilton D, Johnson DL, Caborn DN (2000) Interference screw fixation strength of a quadrupled hamstring tendon graft is directly related to bone mineral density and insertion torque. Am J Sports Med 28:705–710

    PubMed  Google Scholar 

  24. Anderson SD (2006) Practical light embalming technique for use in the surgical fresh tissue dissection laboratory. Clin Anat 19:8–11

    Article  PubMed  Google Scholar 

  25. Ohman C, Dall’Ara E, Baleani M, Van Sint Jan S, Viceconti M (2008) The effects of embalming using 4% formalin solution on the compressive mechanical properties of human cortical bone. Clin Biomech 23:1294–1298

    Article  Google Scholar 

  26. Sedlin ED, Hirsch C (1966) Factors affecting the determination of the physical properties of femoral cortical bone. Acta Orthop Scand 37:29–48

    Article  PubMed  CAS  Google Scholar 

  27. Charlick DA, Caborn DN (2000) Technical note: alternative soft-tissue graft preparation technique for cruciate ligament reconstruction. Arthroscopy 16:E20

    Article  PubMed  CAS  Google Scholar 

  28. Goble EM, Downey DJ, Wilcox TR (1995) Positioning of the tibial tunnel for anterior cruciate ligament reconstruction. Arthroscopy 11:688–695

    Article  PubMed  CAS  Google Scholar 

  29. Howell SM, Wallace MP, Hull ML, Deutsch ML (1999) Evaluation of the single-incision arthroscopic technique for anterior cruciate ligament replacement. A study of tibial tunnel placement, intraoperative graft tension, and stability. Am J Sports Med 27:284–293

    PubMed  CAS  Google Scholar 

  30. Morrison JB (1969) Function of the knee joint in various activities. Biomed Eng 4:573–580

    PubMed  CAS  Google Scholar 

  31. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 66:344–352

    PubMed  CAS  Google Scholar 

  32. Noyes FR, Butler DL, Paulos LE, Grood ES (1983) Intra-articular cruciate reconstruction. I: Perspectives on graft strength, vascularization, and immediate motion after replacement. Clin Orthop Rel Res 172:71–77

    Google Scholar 

  33. Jarvinen TLN, Alami GB, Karlsson J (2010) Anterior cruciate ligament graft fixation—a myth busted? Arthroscopy 26:681–684

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Equipment support was provided by Arthrex, Inc. Thanks to Jack Martin and HillCo. Medical, Louisville, KY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Nyland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walz, B., Nyland, J., Fisher, B. et al. Supplemental bio-tenodesis improves tibialis anterior allograft yield load in extremely low density tibiae. Arch Orthop Trauma Surg 132, 343–347 (2012). https://doi.org/10.1007/s00402-011-1374-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-011-1374-6

Keywords

Navigation