Skip to main content
Log in

Periarticular muscle stimulation controls anterior tibial laxity after experimental ACL section: an experimental study

  • Arthroscopy and Sports Medicine
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Background and purpose

Besides current strategies to treat potentially disabling anterior cruciate ligament (ACL) injury, a new and innovative approach was designed based on electrical stimulation of the muscle to prevent unwanted displacement of the tibia relative to the femur. Our aim was to measure muscular strain and anterior tibial translation (ATT) in a controlled study using an animal model of ACL-deficient knee undergoing muscular electric stimulation.

Methods

Seventeen cat knees under tibial anterior traction of 24.5 N were studied before and after ACL transection. Muscular fiber length variation was obtained by ultrasonomicrometry and ATT by video recordings at the beginning, during, and at the end of the movement. Square pulses of 0.2 ms with 5 V were applied in trains of 500, 100, and 20 ms simultaneously to both the quadriceps and hamstrings before and immediately after traction.

Results

Electric stimulation of ACL-deficient knees normalized muscular strain to values of control knees. An increased resistance to muscular lengthening was observed in stimulated knees. Stimulation before traction maintained similar ATT than control knees during the subsequent traction.

Discussion

Electric muscular stimulation in the ACL-deficient knee provoked periarticular muscle contraction, controlling ATT when time-adjusted stimulus (before traction) was used. This suggested that artificially inducing the muscular response could help to control anterior knee laxity after ACL injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ageberg E (2002) Consequences of a ligament injury on neuromuscular function and relevance to rehabilitation—using the anterior cruciate ligament-injured knee as model. J Electromyogr Kinesiol 12:205–212. doi:10.1016/S1050-6411(02)00022-6

    Article  PubMed  Google Scholar 

  2. Baratta R, Solomonow M, Zhou BH, Letson D, Chuinard R, D’Ambrosia R (1988) Muscular coactivation. The role of the antagonist musculature in maintaining knee stability. Am J Sports Med 16:113–122. doi:10.1177/036354658801600205

    Article  PubMed  CAS  Google Scholar 

  3. Beynnon B, Johnson R, Fleming B (2002) The science of anterior cruciate ligament rehabilitation. Clin Orthop Relat Res 402:9–20. doi:10.1097/00003086-200209000-00003

    Article  PubMed  Google Scholar 

  4. Bonsfills N, Raygoza JJ, Boemo E, Garrido J, Nunez A, Gomez-Barrena E (2007) Proprioception in the ACL-ruptured knee: the contribution of the medial collateral ligament and patellar ligament. An in vivo experimental study in the cat. Knee 14:39–45. doi:10.1016/j.knee.2006.09.003

    Article  PubMed  CAS  Google Scholar 

  5. Chmielewski TL, Hurd WJ, Snyder-Mackler L (2005) Elucidation of a potentially destabilizing control strategy in ACL deficient non-copers. J Electromyogr Kinesiol 15:83–92. doi:10.1016/j.jelekin.2004.07.003

    Article  PubMed  CAS  Google Scholar 

  6. Chmielewski TL, Ramsey DK, Snyder-Mackler L (2005) Evidence for differential control of tibial position in perturbed unilateral stance after acute ACL rupture. J Orthop Res 23:54–60. doi:10.1016/j.orthres.2004.05.011

    Article  PubMed  CAS  Google Scholar 

  7. Chmielewski TL, Rudolph KS, Snyder-Mackler L (2002) Development of dynamic knee stability after acute ACL injury. J Electromyogr Kinesiol 12:267–274. doi:10.1016/S1050-6411(02)00013-5

    Article  PubMed  Google Scholar 

  8. Courtney C, Rine RM, Kroll P (2005) Central somatosensory changes and altered muscle synergies in subjects with anterior cruciate ligament deficiency. Gait Posture 22:69–74. doi:10.1016/j.gaitpost.2004.07.002

    Article  PubMed  Google Scholar 

  9. Courtney CA, Rine RM (2006) Central somatosensory changes associated with improved dynamic balance in subjects with anterior cruciate ligament deficiency. Gait Posture 24:190–195. doi:10.1016/j.gaitpost.2005.08.006

    Article  PubMed  Google Scholar 

  10. Dhaher YY, Tsoumanis AD, Rymer WZ (2003) Reflex muscle contractions can be elicited by valgus positional perturbations of the human knee. J Biomech 36:199–209. doi:10.1016/S0021-9290(02)00334-2

    Article  PubMed  CAS  Google Scholar 

  11. Ding J, Wexler AS, Binder-Macleod SA (2000) Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains. J Appl Physiol 88:917–925

    PubMed  CAS  Google Scholar 

  12. Ding J, Wexler AS, Binder-Macleod SA (2000) A predictive model of fatigue in human skeletal muscles. J Appl Physiol 89:1322–1332

    PubMed  CAS  Google Scholar 

  13. Freeman MA, Wyke B (1967) The innervation of the knee joint. An anatomical and histological study in the cat. J Anat 101:505–532

    PubMed  CAS  Google Scholar 

  14. Gillis G, Biewener A (2000) Hindlimb extensor muscle function during jumping and swimming in the toad (Bufo marinus). J Exp Biol 203:3547–3563

    PubMed  CAS  Google Scholar 

  15. Gomez-Barrena E, Bonsfills N, Martin J, Ballesteros-Masso R, Foruria A, Nuñez-Molina A (2007) Neuromuscular activity around the knee is not recovered after experimental anterior cruciate ligament reconstruction. Acta Orthop (in press)

  16. Gómez-Barrena E, Martínez-Moreno E, Munuera L (1996) Segmental sensory innervation of the anterior cruciate ligament and the patellar tendon of the cat’s knee. Acta Orthop Scand 67:545–552

    PubMed  Google Scholar 

  17. Gómez-Barrena E, Núñez A, Ballesteros R, Martínez-Moreno E, Munuera L (1999) Anterior cruciate ligament reconstruction affects proprioception in the cat’s knee. Acta Orthop Scand 70:185–193

    PubMed  Google Scholar 

  18. Gómez-Barrena E, Núñez A, Martínez-Moreno E, Valls J, Munuera L (1997) Neural and muscular electric activity in the cat’s knee. Acta Orthop Scand 68:149–155

    PubMed  Google Scholar 

  19. Good L, Roos H, Gottlieb DJ, Renstrom PA, Beynnon BD (1999) Joint position sense is not changed after acute disruption of the anterior cruciate ligament. Acta Orthop Scand 70:194–198

    Article  PubMed  CAS  Google Scholar 

  20. Grood E, Suntay W (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105:136–144

    Article  PubMed  CAS  Google Scholar 

  21. Herzog W, Hasler E, Leonard T (1996) In-situ calibration of the implantable force transducer. J Biomech 29:1649–1652

    PubMed  CAS  Google Scholar 

  22. Herzog W, Longino D, Clark A (2003) The role of muscles in joint adaptation and degeneration. Langenbecks Arch Surg 388:305–315. doi:10.1007/s00423-003-0402-6

    Article  PubMed  CAS  Google Scholar 

  23. Hogervorst T, Brand RA (2003) Joint mechanoreceptors and knee function. In: Pedowitz R (ed) Daniel’s knee injuries. Ligament and cartilage structure, function, injury, and repair. Lippincott/Williams &Wilkins, Philadelphia/Baltimore, pp 138–143

    Google Scholar 

  24. Houck JR, Wilding GE, Gupta R, De Haven KE, Maloney M (2007) Analysis of EMG patterns of control subjects and subjects with ACL deficiency during an unanticipated walking cut task. Gait Posture 25:628–638. doi:10.1016/j.gaitpost.2006.07.001

    Article  PubMed  Google Scholar 

  25. Hoyt D, Wickler S, Biewener A, Cogger E, De la Paz K (2005) In vivo muscle function vs speed. I. Muscle strain in relation to length change of the muscle-tendon unit. J Exp Biol 208:1175–1190. doi:10.1242/jeb.01486

    Article  PubMed  Google Scholar 

  26. Johansson H, Sjolander P, Sojka P (1991) A sensory role for the cruciate ligaments. Clin Orthop Relat Res 268:161–178

    PubMed  Google Scholar 

  27. Kebaetse MB, Turner AE, Binder-Macleod SA (2002) Effects of stimulation frequencies and patterns on performance of repetitive, nonisometric tasks. J Appl Physiol 92:109–116

    PubMed  Google Scholar 

  28. Krogsgaard MR, Dyhre-Poulsen P, Fischer-Rasmussen T (2002) Cruciate ligament reflexes. J Electromyogr Kinesiol 12:177–182. doi:10.1016/S1050-6411(02)00018-4

    Article  PubMed  Google Scholar 

  29. Maitland M, Leonard T, Frank C, Shrive N, Herzog W (1998) Longitudinal measurement of tibial motion relative to the femur during passive displacements in the cat before and after anterior cruciate ligament transection. J Orthop Res 16:448–454. doi:10.1002/jor.1100160409

    Article  PubMed  CAS  Google Scholar 

  30. Maitland M, Leonard T, Frank C, Shrive N, Herzog W (1998) Method to assess in vivo knee stability longitudinally in an animal model of ligament injury. J Orthop Res 16:441–447. doi:10.1002/jor.1100160408

    Article  PubMed  CAS  Google Scholar 

  31. Nakajima M, Kawamura K, Takeda I (2003) Electromyographic analysis of a modified maneuver for quadriceps femoris muscle setting with co-contraction of the hamstrings. J Orthop Res 21:559–564. doi:10.1016/S0736-0266(02)00193-6

    Article  PubMed  Google Scholar 

  32. Nikolic ZM, Popovic DB, Stein RB, Kenwell Z (1994) Instrumentation for ENG and EMG recordings in FES systems. IEEE Trans Biomed Eng 41:703–706. doi:10.1109/10.301739

    Article  PubMed  CAS  Google Scholar 

  33. Noyes FR, Matthews DS, Mooar PA, Grood ES (1983) The symptomatic anterior cruciate-deficient knee. Part II: the results of rehabilitation, activity modification, and counseling on functional disability. J Bone Joint Surg Am 65:163–174

    PubMed  CAS  Google Scholar 

  34. O’Connor JJ (1993) Can muscle co-contraction protect knee ligaments after injury or repair? J Bone Joint Surg Br 75:41–48

    PubMed  Google Scholar 

  35. Paternostro-Sluga T, Fialka C, Alacamliogliu Y, Saradeth T, Fialka-Moser V (1999) Neuromuscular electrical stimulation after anterior cruciate ligament surgery. Clin Orthop Relat Res 368:166–175

    Article  PubMed  Google Scholar 

  36. Riener R, Quintern J (2000) Properties of artificially stimulated muscles: stimulation and experiments. In: Winters J, Crago P (eds) Neural control of posture and movement. Springer, New York, pp 590–601

    Google Scholar 

  37. Rudolph KS, Eastlack ME, Axe MJ, Snyder-Mackler L (1998) Movement patterns after anterior cruciate ligament injury: a comparison of patients who compensate well for the injury and those who require operative stabilization. J Electromyogr Kinesiol 8:349–362. doi:10.1016/S1050-6411(97)00042-4

    Article  PubMed  CAS  Google Scholar 

  38. Sipes N, Shearn J, Butler D (2005) The effects of orientation, temperature, and displacement magnitude changes on the sonometrics system accuracy. J Biomech 38:2486–2490. doi:10.1016/j.jbiomech.2004.10.017

    Article  PubMed  CAS  Google Scholar 

  39. Snyder-Mackler L, Ladin Z, Schepsis AA, Young JC (1991) Electrical stimulation of the thigh muscles after reconstruction of the anterior cruciate ligament. Effects of electrically elicited contraction of the quadriceps femoris and hamstring muscles on gait and on strength of the thigh muscles. J Bone Joint Surg Am 73:1025–1036

    PubMed  CAS  Google Scholar 

  40. Solomonow M, Baratta R, Zhou E, Shoji H, Bose W, Beck C et al (1987) The synergistic action of the anterior cruciate ligament and thigh muscles in maintaining joint stability. Am J Sports Med 15:207–213. doi:10.1177/036354658701500302

    Article  PubMed  CAS  Google Scholar 

  41. Struppler A, Angerer B, Gundisch C, Havel P (2004) Modulatory effect of repetitive peripheral magnetic stimulation on skeletal muscle tone in healthy subjects: stabilization of the elbow joint. Exp Brain Res 157:59–66. doi:10.1007/s00221-003-1817-6

    Article  PubMed  Google Scholar 

  42. Swanik C, Lephart S, Swanik K, Stone D, Fu F (2004) Neuromuscular dynamic restraint in women with anterior cruciate ligament injuries. Clin Orthop Relat Res 425:189–199. doi:10.1097/00003086-200408000-00027

    Article  PubMed  Google Scholar 

  43. Teixeira da Fonseca S, Silva PL, Ocarino JM, Guimaraes RB, Oliveira MT, Lage CA (2004) Analyses of dynamic co-contraction level in individuals with anterior cruciate ligament injury. J Electromyogr Kinesiol 14:239–247. doi:10.1016/j.jelekin.2003.09.003

    Article  PubMed  Google Scholar 

  44. Van der Helm F (2000) Large-scale musculoskeletal systems: sensorimotor integration and optimization. In: Winters J, Crago P (eds) Neural control of posture and movement. Springer, New York, pp 407–424

    Google Scholar 

  45. Williams G, Barrance P, Snyder-Mackler L, Axe M, Buchanan T (2003) Specificity of muscle action after anterior cruciate ligament injury. J Orthop Res 21:1131–1137. doi:10.1016/S0736-0266(03)00106-2

    Article  PubMed  Google Scholar 

  46. Wojtys E, Huston L (1994) Neuromuscular performance in normal and anterior cruciate ligament-deficient lower extremities. Am J Sports Med 22:89–104. doi:10.1177/036354659402200116

    Article  PubMed  CAS  Google Scholar 

  47. Zhang LQ, Wang G, Nuber GW, Press JM, Koh JL (2003) In vivo load sharing among the quadriceps components. J Orthop Res 21:565–571. doi:10.1016/S0736-0266(02)00196-1

    Article  PubMed  Google Scholar 

  48. Zhou BH, Baratta RV, Solomonow M, Olivier LJ 3rd, D’Ambrosia RD (1996) Evaluation of isometric antagonist coactivation strategies of electrically stimulated muscles. IEEE Trans Biomed Eng 43:150–160. doi:10.1109/10.481984

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported with a grant by F.I.S. (Fondo de Investigaciones Sanitarias; 01/0371). The authors have received no other support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuria Bonsfills.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonsfills, N., Nuñez, A. & Gomez-Barrena, E. Periarticular muscle stimulation controls anterior tibial laxity after experimental ACL section: an experimental study. Arch Orthop Trauma Surg 129, 1053–1061 (2009). https://doi.org/10.1007/s00402-008-0763-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-008-0763-y

Keywords

Navigation