Skip to main content

Advertisement

Log in

Mosaicplasty associated with gene enhanced tissue engineering for the treatment of acute osteochondral defects in a goat model

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Objective

To compare single mosaicplasty, mosaicplasty associated with gene enhanced tissue engineering and mosaicplasty associated with the gels of non-gene transduced bone mesenchymal stem cells (BMSCs) in alginate for the treatment of acute osteochondral defects in a goat model.

Methods

The principle and methods of tissue engineering were used. BMSCs were separated and amplified in vitro, and human transforming growth factor-β1 (hTGF-β1) gene was transduced to the cells. Then, the cells were suspended in the alginate. At the same time using mosaicplasty to repair the defects on the medial femoral condyle, the dead space between the cylindrical grafts were filled with the gels of hTGF-β1 gene transduced BMSCs in alginate. Single mosaicplasty and mosaicplasty associated with the gels of non-gene transduced BMSCs in alginate were compared by the different time observation.

Results

All of the three treatments could repair the acute osteochondral defects. Mosaicplasty associated with gene enhanced tissue engineering had a better integration than single mosaicplasty, and mosaicplasty associated with the gels of non-gene transduced BMSCs in alginate.

Conclusion

Mosaicplasty associated with tissue engineering could solve the problem of the poor concrescence of the remnant defect and the integration of single mosaicplasty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abernethy PJ, Townsend PR, Rose RM et al (1978) Is chondromalacia patellae a separate clinical entity? J Bone Joint Surg Br 60-B(2):205–210

    PubMed  CAS  Google Scholar 

  2. Hungerford DS, Barry M (1979) Biomechanics of the patellofemoral joint. Clin Orthop Relat Res 144:9–15

    PubMed  Google Scholar 

  3. Steinwachs MR, Guggi T, Kreuz PC (2008) Marrow stimulation techniques. Injury 39(Suppl 1):S26–S31

    Article  PubMed  Google Scholar 

  4. Steadman JR, Sterett WI (1995) The surgical treatment of knee injuries in skiers. Med Sci Sports Exerc 27(3):328–333

    PubMed  CAS  Google Scholar 

  5. Hangody L, Fules P (2003) Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am 85-A(Suppl 2):25–32

    PubMed  Google Scholar 

  6. Horas U, Pelinkovic D, Herr G (2003) Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. J Bone Joint Surg Am 85(2):185–192

    PubMed  Google Scholar 

  7. Onstott AT, Moczo A, Harris NL (2000) Osteochondral autotransfer—newer treatment for chondral defects. AORN J 71(4):843–845 848–851

    Article  PubMed  CAS  Google Scholar 

  8. Evans NA, Jackson DW, Simon TM (2005) MRI and histologic evaluation of two cases of osteochondral autograft transplantation procedures. J Knee Surg 18:43–48

    PubMed  Google Scholar 

  9. Thaunat M, Couchon S, Lunn J, Charrois O, Fallet L, Beaufils P (2007) Cartilage thickness matching of selected donor and recipient sites for osteochondral autografting of the medial femoral condyle. Knee Surg Sports Traumatol Arthrosc. 15(4):381–386 Epub 2006 Nov 10

    Article  PubMed  Google Scholar 

  10. Tibesku CO, Szuwart T, Kleffner TO, Schlegel PM, Jahn UR, Van Aken H, Fuchs S (2004) Hyaline cartilage degenerates after autologous osteochondral transplantation. J Orthop Res 22(6):1210–1214

    Article  PubMed  CAS  Google Scholar 

  11. Grande DA, Breitbart AS, Mason J, Paulino C, Laser J, Schwartz RE (1999) Cartilage tissue engineering: current limitations and solutions. Clin Orthop Relat Res 367(Suppl):S176–S185

    Article  PubMed  Google Scholar 

  12. Cucchiarini M, Madry H (2005) Gene therapy for cartilage defects. J Gene Med 7(12):1495–1509

    Article  PubMed  CAS  Google Scholar 

  13. Redman SN, Oldfield SF, Archer CW (2005) Current strategies for articular cartilage repair. Eur Cell Mater 9:23–32 discussion 23–32

    PubMed  CAS  Google Scholar 

  14. Goodrich LR, Hidaka C, Robbins PD, Evans CH, Nixon AJ (2007) Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model. J Bone Joint Surg Br 89(5):672–685

    Article  PubMed  CAS  Google Scholar 

  15. Pagnotto MR, Wang Z, Karpie JC, Ferretti M, Xiao X, Chu CR (2007) Adeno-associated viral gene transfer of transforming growth factor-beta1 to human mesenchymal stem cells improves cartilage repair. Gene Ther 14(10):804–813 Epub 2007 Mar 8

    Article  PubMed  CAS  Google Scholar 

  16. Guo X, Zheng Q, Yang S, Shao Z, Yuan Q, Pan Z, Tang S, Liu K, Quan D (2006) Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor beta1 gene. Biomed Mater 1(4):206–215 Epub 2006 Sep 22

    Article  PubMed  CAS  Google Scholar 

  17. Kim HT, Zaffagnini S, Mizuno S, Abelow S, Safran MR (2006) A peek into the possible future of management of articular cartilage injuries: gene therapy and scaffolds for cartilage repair. J Orthop Sports Phys Ther 36(10):765–773

    PubMed  Google Scholar 

  18. Björnsson S (1993) Simultaneous preparation and quantitation of proteoglycans by precipitation with alcian blue. Anal Biochem 210(2):282–291

    Article  PubMed  Google Scholar 

  19. O’Driscoll SW, Keeley FW, Salter RB (1988) Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year. J Bone Joint Surg Am 70(4):595–606

    PubMed  Google Scholar 

  20. Feczkó P, Hangody L, Varga J, Bartha L, Diószegi Z, Bodó G, Kendik Z, Módis L (2003) Experimental results of donor site filling for autologous osteochondral mosaicplasty. Arthroscopy 19(7):755–761

    PubMed  Google Scholar 

  21. Bodo G, Hangody L, Szabo Z, Peham C, Schinzel M, Girtler D, Sotonyi P (2000) Arthroscopic autologous osteochondral mosaicplasty for the treatment of subchondral cystic lesion in the medial femoral condyle in a horse. Acta Vet Hung 48:343–354

    Article  PubMed  CAS  Google Scholar 

  22. Bodo G, Kaposi AD, Hangody L, Toth J, Bakos Z, Lukacs Z, Pentek G (2001) The surgical technique and the age of the horse both influence the outcome of mosaicplasty in a cadaver equine stifle model. Acta Vet Hung 49:111–116

    Article  PubMed  CAS  Google Scholar 

  23. Szerb I, Hangody L, Duska Z, Kaposi NP (2005) Mosaicplasty: long-term follow-up. Bull Hosp Jt Dis 63(1–2):54–62

    PubMed  Google Scholar 

  24. Hangody L, Feczkó P, Bartha L, Bodó G, Kish G (2001) Mosaicplasty for the treatment of articular defects of the knee and ankle. Clin Orthop Relat Res 391(Suppl):S328–S336

    Article  PubMed  Google Scholar 

  25. Hangody L, Vásárhelyi G, Hangody LR, Sükösd Z, Tibay G, Bartha L, Bodó G (2008) Autologous osteochondral grafting-technique and long-term results. Injury 39(1):32–39

    Article  Google Scholar 

  26. Gudas R, Stankevicius E, Monastyreckiene E, Pranys D, Kalesinskas RJ (2006) Osteochondral autologous transplantation versus microfracture for the treatment of articular cartilage defects in the knee joint in athletes. Knee Surg Sports Traumatol Arthrosc 14(9):834–842 Epub 2006 Mar 22

    Article  PubMed  Google Scholar 

  27. Dozin B, Malpeli M, Cancedda R, Bruzzi P, Calcagno S, Molfetta L, Priano F, Kon E, Marcacci M (2005) Comparative evaluation of autologous chondrocyte implantation and mosaicplasty: a multicentered randomized clinical trial. Clin J Sport Med 15(4):220–226

    Article  PubMed  Google Scholar 

  28. Oztürk A, Ozdemir MR, Ozkan Y (2006) Osteochondral autografting (mosaicplasty) in grade IV cartilage defects in the knee joint: 2- to 7-year results. Int Orthop 30(3):200–204 Epub 2006 Mar 8

    Article  PubMed  Google Scholar 

  29. Koulalis D, Schultz W, Heyden M, König F (2004) Autologous osteochondral grafts in the treatment of cartilage defects of the knee joint. Knee Surg Sports Traumatol Arthrosc 12(4):329–334

    Article  PubMed  CAS  Google Scholar 

  30. Haasper C, Zelle BA, Knobloch K, Jagodzinski M, Citak M, Lotz J, Krettek C, Zeichen J (2008) No mid-term difference in mosaicplasty in previously treated versus previously untreated patients with osteochondral lesions of the talus. Arch Orthop Trauma Surg 128(5):499–504 Epub 2007 Nov 27

    Article  PubMed  Google Scholar 

  31. Bentley G, Biant LC, Carrington RW (2003) A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br 85(2):223–230

    Article  PubMed  CAS  Google Scholar 

  32. Hurtig MB, Fretz PB, Doige CE, Schnurr DL (1988) Effects of lesion size and location on equine articular cartilage repair. Can J Vet Res 52:137–146

    PubMed  CAS  Google Scholar 

  33. Lane JG, Massie JB, Ball ST, Amiel ME, Chen AC, Bae WC, Sah RL, Amiel D (2004) Follow-up of osteochondral plug transfers in a goat model: a 6-month study. Am J Sports Med 32(6):1440–1450 Epub 2004 Jul 20

    Article  PubMed  Google Scholar 

  34. Fonseca F, Balacó I. (2007) Fixation with autogenous osteochondral grafts for the treatment of osteochondritis dissecans (stages III and IV). Int Orthop Nov 24 [Epub ahead of print]

  35. Siebert CH, Schneider U, Sopka S, Wahner T, Miltner O, Niedhart C (2006) Ingrowth of osteochondral grafts under the influence of growth factors: 6-month results of an animal study. Arch Orthop Trauma Surg. 126(4):247–252 Epub 2005 Dec 15

    Article  PubMed  Google Scholar 

  36. Siebert CH, Miltner O, Weber M, Sopka S, Koch S, Niedhart C (2003) Healing of osteochondral grafts in an ovine model under the influence of bFGF. Arthroscopy 19(2):182–187

    PubMed  Google Scholar 

  37. Rose T, Craatz S, Hepp P, Raczynski C, Weiss J, Josten C, Lill H (2005) The autologous osteochondral transplantation of the knee: clinical results, radiographic findings and histological aspects. Arch Orthop Trauma Surg 125(9):628–637

    Article  PubMed  Google Scholar 

  38. Sharma B, Williams CG, Khan M, Manson P, Elisseeff JH (2007) In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel. Plast Reconstr Surg 119(1):112–120

    Article  PubMed  CAS  Google Scholar 

  39. Jorgensen C, Gordeladze J, Noel D (2004) Tissue engineering through autologous mesenchymal stem cells. Curr Opin Biotechnol 15(5):406–410

    Article  PubMed  CAS  Google Scholar 

  40. Wagner DR, Lindsey DP, Li KW, Tummala P, Chandran SE, Smith RL, Longaker MT, Carter DR, Beaupre GS (2008) Hydrostatic pressure enhances chondrogenic differentiation of human bone marrow stromal cells in osteochondrogenic medium. Ann Biomed Eng 36(5):813–820 Epub 2008 Feb 12

    Article  PubMed  Google Scholar 

  41. Indrawattana N, Chen G, Tadokoro M, Shann LH, Ohgushi H, Tateishi T, Tanaka J, Bunyaratvej A (2004) Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun 320(3):914–919

    Article  PubMed  CAS  Google Scholar 

  42. Glansbeek HL, van Beuningen HM, Vitters EL, van der Kraan PM, van den Berg WB (1998) Stimulation of articular cartilage repair in established arthritis by local administration of transforming growth factor-beta into murine knee joints. Lab Invest 78(2):133–142

    PubMed  CAS  Google Scholar 

  43. Evans CH, Ghivizzani SC, Lechman ER, Mi Z, Jaffurs D, Robbins PD (1999) Lessons learned from gene transfer approaches. Arthritis Res 1(1):21–24 Epub 1999 Jul 8

    Article  PubMed  Google Scholar 

  44. van Beuningen HM, Glansbeek HL, van der Kraan PM, van den Berg WB (1998) Differential effects of local application of BMP–2 or TGF-beta 1 on both articular cartilage composition and osteophyte formation. Osteoarthritis Cartilage 6(5):306–317

    Article  PubMed  Google Scholar 

  45. Gelse K, von der Mark K, Aigner T, Park J, Schneider H (2003) Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells. Arthritis Rheum 48(2):430–441

    Article  PubMed  CAS  Google Scholar 

  46. Diduch DR, Jordan LC, Mierisch CM, Balian G (2000) Marrow stromal cells embedded in alginate for repair of osteochondral defects. Arthroscopy 16(6):571–577

    Article  PubMed  CAS  Google Scholar 

  47. Uematsu K, Hattori K, Ishimoto Y, Yamauchi J, Habata T, Takakura Y, Ohgushi H, Fukuchi T, Sato M (2005) Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials 26(20):4273–4279

    Article  PubMed  CAS  Google Scholar 

  48. Guo X, Wang C, Zhang Y, Xia R, Hu M, Duan C, Zhao Q, Dong L, Lu J, Qing Song Y (2004) Repair of large articular cartilage defects with implants of autologous mesenchymal stem cells seeded into beta-tricalcium phosphate in a sheep model. Tissue Eng 10(11–12):1818–1829

    Article  PubMed  CAS  Google Scholar 

  49. Caplan AI, Elyaderani M, Mochizuki Y, Wakitani S, Goldberg VM (1997) Principles of cartilage repair and regeneration. Clin Orthop Relat Res 342:254–269

    Article  PubMed  Google Scholar 

  50. Solchaga LA, Goldberg VM, Caplan AI (2001) Cartilage regeneration using principles of tissue engineering. Clin Orthop Relat Res 391(Suppl):S161–S170

    Article  PubMed  Google Scholar 

  51. Trippel SB, Ghivizzani SC, Nixon AJ (2004) Gene-based approaches for the repair of articular cartilage. Gene Ther 11(4):351–359

    Article  PubMed  CAS  Google Scholar 

  52. O’Driscoll SW (2001) Preclinical cartilage repair: current status and future perspectives. Clin Orthop Relat Res 391(Suppl):S397–S401

    Article  PubMed  Google Scholar 

  53. Wang H, Kandel RA (2004) Chondrocytes attach to hyaline or calcified cartilage and bone. Osteoarthritis Cartilage 12(1):56–64

    Article  PubMed  Google Scholar 

  54. Grashoff C, Aszódi A, Sakai T et al (2003) Integrin-linked kinase regulates chondrocyte shape and proliferation. EMBO Rep 4(4):432–438

    Article  PubMed  CAS  Google Scholar 

  55. Kim HK, Moran ME, Salter RB (1991) The potential for regeneration of articular cartilage in defects created by chondral shaving and subchondral abrasion. An experimental investigation in rabbits. J Bone Joint Surg Am 73(9):1301–1315

    PubMed  CAS  Google Scholar 

  56. Galois L, Freyria AM, Grossin L et al (2004) Cartilage repair: surgical techniques and tissue engineering using polysaccharide- and collagen-based biomaterials. Biorheology 41(3–4):433–443

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors like to thank Shanghai Puwei Orthopedics Ltd for the provision of supplies and surgical instruments, the orthopedic laboratory of Shanghai No. 9 Hospital affiliated to Shanghai Jiaotong University for the Adv-hTGF-β1, Adv-βgal and 293 cells. The corresponding author did the above research as he studied a PhD degree at Shanghai No. 9 Hospital affiliated to Shanghai Jiaotong University.

Conflict of interest statement

No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Hou, XK., Li, X. et al. Mosaicplasty associated with gene enhanced tissue engineering for the treatment of acute osteochondral defects in a goat model. Arch Orthop Trauma Surg 129, 757–771 (2009). https://doi.org/10.1007/s00402-008-0761-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-008-0761-0

Keywords

Navigation