Skip to main content

Advertisement

Log in

Tau filaments with the chronic traumatic encephalopathy fold in a case of vacuolar tauopathy with VCP mutation D395G

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Dominantly inherited mutation D395G in the gene encoding valosin-containing protein causes vacuolar tauopathy, a type of behavioural-variant frontotemporal dementia, with marked vacuolation and abundant filamentous tau inclusions made of all six brain isoforms. Here we report that tau inclusions were concentrated in layers II/III of the frontotemporal cortex in a case of vacuolar tauopathy. By electron cryomicroscopy, tau filaments had the chronic traumatic encephalopathy (CTE) fold. Tau inclusions of vacuolar tauopathy share this cortical location and the tau fold with CTE, subacute sclerosing panencephalitis and amyotrophic lateral sclerosis/parkinsonism-dementia complex, which are believed to be environmentally induced. Vacuolar tauopathy is the first inherited disease with the CTE tau fold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Cryo-EM maps have been deposited in the Electron Microscopy Data Bank (EMDB) with accession numbers: EMD-19926; EMD-19927; EMD-19928. Corresponding refined atomic models have been deposited in the Protein Data Bank (PDB) under the following accession numbers: 9ERM, 9ERN, 9ERO. Please address requests for materials to the corresponding authors.

References

  1. Bodnar NO, Rapoport TA (2017) Molecular mechanism of substrate processing by the Cdc48 ATPase complex. Cell 169:722–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kaprai GI et al (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D 66:12–21

    Article  CAS  PubMed  Google Scholar 

  3. Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I et al (2014) Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol 128:755–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Croll TI (2018) ISOLDE: a physically realistic environment for model building into low-resolution elerctron density map. Acta Crystallogr D 74:519–530

    Article  CAS  Google Scholar 

  5. Darwich NF, Phan JM, Kim E, Suh ER, Papatriantafyllou JD, Changolkar L et al (2020) Autosomal dominant VCP hypomorph mutation impairs disaggregation of PHF-tau. Science 370:eaay8826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D 66:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Falcon B, Zivanov J, Zhang W, Murzin AG, Garringer HJ, Vidal R et al (2019) Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature 568:420–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ et al (2017) Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547:185–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8:159–168

    Article  CAS  PubMed  Google Scholar 

  10. Goedert M, Crowther RA, Scheres SHW, Spillantini MG (2024) Tau and neurodegeneration. Cytoskeleton 81:95–102

    Article  CAS  PubMed  Google Scholar 

  11. Guo H, Franken E, Deng Y, Benlekbir S, Lezcano GS, Janssen B et al (2020) Electron-event representation data enable efficient cryo-EM file storage with full preservation of spatial and temporal resolution. IUCrJ 7:860–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hasegawa M, Watanabe S, Kondo H, Akiyama H, Mann DMA, Saito Y et al (2014) 3R and 4R tau isoforms in paired helical filaments in Alzheimer’s disease. Acta Neuropathol 127:303–305

    Article  PubMed  Google Scholar 

  13. He S, Scheres SHW (2017) Helical reconstruction in RELION. J Struct Biol 193:163–176

    Article  Google Scholar 

  14. Hof PR, Bouras C, Buée L, Delacourte A, Perl DP, Morrison JH (1992) Differential distribution of neurofibrillary tangles in the cerebral cortex of dementia pugilistica and Alzheimer’s disease cases. Acta Neuropathol 85:23–30

    Article  CAS  PubMed  Google Scholar 

  15. Hof PR, Charpiot A, Delacourte A, Buée L, Purohit D, Perl DP et al (1992) Distribution of neurofibrillary tangles and senile plaques in the cerebral cortex in postencephalitic parkinsonism. Neurosci Lett 139:10–14

    Article  CAS  PubMed  Google Scholar 

  16. Kametani F, Yoshida M, Matsubara T, Murayama S, Saito Y, Kawakami I et al (2020) Comparison of common and disease-specific post-translational modifictions of pathological tau associated with a wide range of tauopathies. Front Neurosci 14:581936

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kawakatsu S, Kobayashi R, Hayashi H, Morioka D, Utsunomiya A, Kabasawa T et al (2021) Clinicopathological heterogeneity of Alzheimer’s disease with pure Alzheimer’s disease pathology: cases associated with dementia with Lewy bodies, very early-onset dementia, and primary progressive aphasia. Neuropathology 41:427–449

    Article  CAS  PubMed  Google Scholar 

  18. Keren-Shaul H, Spinrad A, Weinmer A, Matcovitch-Natan O, Dvir-Szrenfeld R, Ulland TK et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276–1290

    Article  CAS  PubMed  Google Scholar 

  19. Kimanius D, Dong L, Sharov G, Nakane T, Scheres SHW (2021) New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem J 478:4169–4185

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi R, Naruse H, Kawakatsu S, Iseki C, Suzuki Y, Koyama S et al (2022) Valosin-containing protein Asp395Gly mutation in a patient with frontotemporal dementia: a case report. BMC Neurol 22:406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kovacs GG, Ghetti B, Goedert M (2022) Classification of diseases with accumulation of tau protein. Neuropathol Appl Neurobiol 48:e12792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lövestam S, Koh FA, van Knippenberg B, Kotecha A, Murzin AG, Goedert M et al (2022) Assembly of recombinant tau into filaments identical to those of Alzheimer’s disease and chronic traumatic encephalopathy. Elife 11:e76494

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lövestam S, Li D, Wagstaff JL, Kotecha A, Kimanius D, McLaughlin SH et al (2024) Disease-specific tau filaments assemble via polymorphic intermediates. Nature 625:119–125

    Article  PubMed  Google Scholar 

  24. Mimuro M, Yoshida S, Kuzuhara S, Kokubo Y (2018) Amyotrophic lateral sclerosis and parkinsonism-dementia complex of the Hohara focus of the Kii peninsula: a multiple proteinopathy? Neuropathology 38:98–107

    Article  CAS  PubMed  Google Scholar 

  25. Miyahara H, Akagi A, Riku Y, Sone J, Otsuka Y, Sakai M et al (2022) Independent distribution between tauopathy secondary to subacute sclerosing panencephalitis and measles virus. Brain Pathol 32:e13069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D 53:240–255

    Article  CAS  PubMed  Google Scholar 

  27. Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA et al (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D 67:255–267

    Article  Google Scholar 

  28. Pearson RCA, Esiri MM, Hiorns RW, Wilcock GK, Powell TPS (1985) Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer disease. Proc Natl Acad Sci USA 82:4531–4534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI et al (2011) Chimera X: structure visualization for researchers, editors and developers. Protein Sci 30:70–82

    Article  Google Scholar 

  30. Pfeffer G, Lee G, Pontifex CS, Fanganiello RD, Peck A, Weihl CC et al (2022) Multisystem proteinopathy due to VCP mutations: a review of clinical heterogeneity and genetic diagnosis. Genes 13:963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pollanen MS, Onzivua S, McKeever PM, Robertson J, Mackenzie IR, Kovacs GG et al (2023) The spectrum of disease and tau pathology of nodding syndrome in Uganda. Brain 146:954–967

    Article  PubMed  Google Scholar 

  32. Qi C, Hasegawa M, Takao M, Sakai M, Sasaki M, Mizutani M et al (2023) Identical tau filaments in subacute sclerosing panencephalitis and chronic traumatic encephalopathy. Acta Neuropathol Commun 11:74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qi C, Verheijen BM, Kokubo Y, Shi Y, Tetter S, Murzin AG et al (2023) Tau filaments from amyotrophic lateral sclerosis/parkinsonism-dementia complex adopt the CTE fold. Proc Natl Acad Sci USA 120:e2306767120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qi C, Lövestam S, Murzin AG, Peak-Chew S, Franco C, Bogdani M et al (2024) Tau filaments with the Alzheimer fold in cases with MAPT mutations V337M and R406W. BioRxiv. https://doi.org/10.1101/2024.04.29.591661

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ramos AM, Koros C, Dokuru DR, Van Berlo V, Kroupis C, Wojta K et al (2019) Frontotemporal dementia spectrum: first genetic screen in a Greek cohort. Neurobiol Aging 224:e1–e8

    Google Scholar 

  36. Rohou A, Grigorieff N (2015) CTFFIND4: fast and accurate defocus estimation from electron micrographs. J Struct Biol 192:216–221

    Article  PubMed  PubMed Central  Google Scholar 

  37. Scheres SHW (2020) Amyloid structure determination in RELION-3.1. Acta Cryst D 76:94–101

    Article  CAS  Google Scholar 

  38. Scheres SHW, Chen S (2012) Prevention of overfitting in cryo-EM structure determination. Nature Meth 9:8453–8454

    Article  Google Scholar 

  39. Scheres SHW, Ryskeldi-Falcon B, Goedert M (2023) Molecular pathology of neurodegenerative diseases by cryo-EM of amyloids. Nature 621:701–710

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt ML, Zhukareva V, Newell KL, Lee VMY, Trojanowski JQ (2001) Tau isoform profile and phosphorylation state in dementia pugilistica recapitulate Alzheimer’s disease. Acta Neuropathol 101:5128–5524

    Article  Google Scholar 

  41. Schweighauser M, Garringer HJ, Klingstedt T, Nilsson KPR, Masami-Suzukake M, Murrell JR et al (2023) Mutation ΔK281 in MAPT causes Pick’s disease. Acta Neuropathol 146:211–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shi Y, Murzin AG, Falcon B, Epstein A, Machin J, Tempest P et al (2021) Cryo-EM structures of tau filaments from Alzheimer’s disease with PET ligand APN-1607. Acta Neuropathol 141:697–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shi Y, Zhang W, Yang Y, Murzin AG, Falcon B, Kotecha A et al (2021) Structure-based classification of tauopathies. Nature 598:359–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shimozawa A, Ono M, Takahara D, Tarutani A, Imura S, Masuda-Suzukake M et al (2017) Propagation of pathological α-synuclein in marmoset brain. Acta Neuropathol Commun 5:12

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tarutani A, Arai T, Murayama S, Hisanaga SI, Hasegawa M (2018) Potent prion-like behaviors of pathogenic α–synuclein and evaluation of inactivation methods. Acta Neuropathol Commun 6:29

    Article  PubMed  PubMed Central  Google Scholar 

  46. The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC

  47. Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D et al (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36:377–381

    Article  CAS  PubMed  Google Scholar 

  48. Wesseling H, Mair W, Kumar M, Schlaffner CN, Tang S, Beerepoot O et al (2020) Tau PTM profiles identify patient heterogeneity and stages of Alzheimer’s disease. Cell 183:1699–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yamashita K, Palmer CM, Burnley T, Murshudov GN (2021) Cryo-EM single particle structure refinement and map calculation using Servalcat. Acta Crystallogr D 77:1282–1291

    Article  CAS  Google Scholar 

  50. Zhu J, Pittman S, Dhavale D, French R, Patterson JN, Kaleelurrrahuman MS et al (2022) VCP suppresses proteopathic seeding in neurons. Mol Neurodegen 17:30

    Article  CAS  Google Scholar 

  51. Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E et al (2018) New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7:e42166

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zivanov J, Otón J, Ke Z, von Kügelen E, Pyle E, Qu K et al (2022) A Bayesian approach to single-particle electron-tomography in RELION-4.0. Elife 11:e83724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Electron Microscopy Facility of the MRC Laboratory of Molecular Biology. We thank Jake Grimmett, Toby Darling and Ivan Clayson for help with high-performance computing, and Takumi Kitaoka and Mitsuru Futakuchi (Yamagata University School of Medicine) for help with neuropathology. We also thank Hiroya Naruse and Tatsushi Toda (University of Tokyo) for genomic analysis. For open access, the MRC Laboratory of Molecular Biology has applied a CC BY public copyright licence to any Author-Accepted Manuscript version arising.

Funding

This work was supported by the UK Medical Research Council (MC_UP_A025-1013 to S.H.W.S. and MC_U105184291 to M.G.), the Japanese Society for the Promotion of Science (JSPS KAKENHI and JP20K07922, to R.K. and S.K.) and the Japanese Ministry of Health, Labour and Welfare (JPMH20GB1002 and JPMH23GB1003, to R.K. and S.K.).

Author information

Authors and Affiliations

Authors

Contributions

RK and SK identified the patient and performed genetic analysis and neuropathology; MH prepared filaments and performed immunoblots; CQ performed cryo-EM data acquisition and structure determination; SHWS, MG and MH supervised the project and all authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Sjors H. W. Scheres, Michel Goedert or Masato Hasegawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

Studies carried out at Yamagata University were approved through the Institution’s ethical review process.

Informed consent

Informed consent was obtained from the patient’s next of kin. This study was approved by the Cambridgeshire 2 Research Ethics Committee (09/H0308/163).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

401_2024_2741_MOESM1_ESM.tif

Supplementary file1 (TIF 23627 KB) Fourier shell correlation (FSC) curves. FSC curves of cryo-EM maps (left panel) and model to map validation (right panel). a, CTE Type I tau filament from VT; CTE Type II tau filament from VT; CTE Type III tau filament from VT

401_2024_2741_MOESM2_ESM.tif

Supplementary file2 (TIF 9588 KB) Double-labelling immunofluorescence using anti-tau and anti-glial fibrillary acid protein antibodies. Sections of frontal cortex from the individual with mutation D395G in VCP were labelled with: a, anti-tau antibody AT8 (green) and anti-glial fibrillary acidic protein antibody (red); b, anti-tau antibody pS396 (red) and anti-glial fibrillary acidic protein antibody (green). DAPI nuclear staining is in blue. There was no evidence for the co-localisation of AT8, pS396 and glial fibrillary acidic protein. Scale bar, 50 m

Supplementary file3 (DOCX 24 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, C., Kobayashi, R., Kawakatsu, S. et al. Tau filaments with the chronic traumatic encephalopathy fold in a case of vacuolar tauopathy with VCP mutation D395G. Acta Neuropathol 147, 86 (2024). https://doi.org/10.1007/s00401-024-02741-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00401-024-02741-x

Keywords

Navigation