Skip to main content

Advertisement

Log in

A muscarinic receptor antagonist reverses multiple indices of diabetic peripheral neuropathy: preclinical and clinical studies using oxybutynin

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Preclinical studies indicate that diverse muscarinic receptor antagonists, acting via the M1 sub-type, promote neuritogenesis from sensory neurons in vitro and prevent and/or reverse both structural and functional indices of neuropathy in rodent models of diabetes. We sought to translate this as a potential therapeutic approach against structural and functional indices of diabetic neuropathy using oxybutynin, a muscarinic antagonist approved for clinical use against overactive bladder. Studies were performed using sensory neurons maintained in vitro, rodent models of type 1 or type 2 diabetes and human subjects with type 2 diabetes and confirmed neuropathy. Oxybutynin promoted significant neurite outgrowth in sensory neuron cultures derived from adult normal rats and STZ-diabetic mice, with maximal efficacy in the 1–100 nmol/l range. This was accompanied by a significantly enhanced mitochondrial energetic profile as reflected by increased basal and maximal respiration and spare respiratory capacity. Systemic (3–10 mg/kg/day s.c.) and topical (3% gel daily) oxybutynin reversed paw heat hypoalgesia in the STZ and db/db mouse models of diabetes and reversed paw tactile allodynia in STZ-diabetic rats. Loss of nerve profiles in the skin and cornea of db/db mice was also prevented by daily topical delivery of 3% oxybutynin for 8 weeks. A randomized, double-blind, placebo-controlled interventional trial was performed in subjects with type 2 diabetes and established peripheral neuropathy. Subjects received daily topical treatment with 3% oxybutynin gel or placebo for 6 months. The a priori designated primary endpoint, significant change in intra-epidermal nerve fibre density (IENFD) in skin biopsies taken before and after 20 weeks of treatments, was met by oxybutynin but not placebo. Secondary endpoints showing significant improvement with oxybutynin treatment included scores on clinical neuropathy, pain and quality of life scales. This proof-of-concept study indicates that muscarinic antagonists suitable for long-term use may offer a novel therapeutic opportunity for treatment of diabetic neuropathy. Trial registry number: NCT03050827.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are available from the corresponding author upon reasonable request.

Abbreviations

CART:

Cardiac autonomic reflex tests

DRG:

Dorsal root ganglion

ICC:

Intra-class coefficient

EVMS:

Eastern Virginia Medical School

HRV:

Heart rate variability

IENF(D):

Intra-epidermal nerve fibre (density)

NIS-LL:

Neuropathy Impairment Score-lower limb

NRS:

Numeric Rating Scale

NSS:

Neuropathy Symptom Scale

NTSS-6:

Neuropathy Total Symptom Score-6

OCR:

Oxygen consumption rate

QOL-DN:

Quality of life-diabetic neuropathy

STZ:

Streptozotocin

TNS:

Toronto Neuropathy Scale

UCSD:

University of California San Diego

UENS:

Utah Early Neuropathy Scale

References

  1. Anand P, Privitera R, Donatien P, Fadavi H, Tesfaye S, Bravis V et al (2022) Reversing painful and non-painful diabetic neuropathy with the capsaicin 8% patch: clinical evidence for pain relief and restoration of function via nerve fiber regeneration. Front Neurol 13:998904. https://doi.org/10.3389/fneur.2022.998904

    Article  PubMed  PubMed Central  Google Scholar 

  2. Appell RA, Chancellor MB, Zobrist RH, Thomas H, Sanders SW (2003) Pharmacokinetics, metabolism, and saliva output during transdermal and extended-release oral oxybutynin administration in healthy subjects. Mayo Clin Proc 78:696–702. https://doi.org/10.4065/78.6.696

    Article  CAS  PubMed  Google Scholar 

  3. Azmi S, Jeziorska M, Ferdousi M, Petropoulos IN, Ponirakis G, Marshall A et al (2019) Early nerve fibre regeneration in individuals with type 1 diabetes after simultaneous pancreas and kidney transplantation. Diabetologia 62:1478–1487. https://doi.org/10.1007/s00125-019-4897-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bastyr EJ 3rd, Price KL, Bril V, Group MS (2005) Development and validity testing of the neuropathy total symptom score-6: questionnaire for the study of sensory symptoms of diabetic peripheral neuropathy. Clin Ther 27:1278–1294. https://doi.org/10.1016/j.clinthera.2005.08.002

    Article  PubMed  Google Scholar 

  5. Boyd A, Casselini C, Vinik E, Vinik A (2011) Quality of life and objective measures of diabetic neuropathy in a prospective placebo-controlled trial of ruboxistaurin and topiramate. J Diabetes Sci Technol 5:714–722. https://doi.org/10.1177/193229681100500326

    Article  PubMed  PubMed Central  Google Scholar 

  6. Boyd AL, Barlow PM, Pittenger GL, Simmons KF, Vinik AI (2010) Topiramate improves neurovascular function, epidermal nerve fiber morphology, and metabolism in patients with type 2 diabetes mellitus. Diabetes Metab Syndr Obes 3:431–437. https://doi.org/10.2147/DMSOTT.S13699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bril V (1999) NIS-LL: the primary measurement scale for clinical trial endpoints in diabetic peripheral neuropathy. Eur Neurol 41(Suppl 1):8–13. https://doi.org/10.1159/000052074

    Article  PubMed  Google Scholar 

  8. Calcutt NA, Smith DR, Frizzi K, Sabbir MG, Chowdhury SK, Mixcoatl-Zecuatl T et al (2017) Selective antagonism of muscarinic receptors is neuroprotective in peripheral neuropathy. J Clin Invest 127:608–622. https://doi.org/10.1172/JCI88321

    Article  PubMed  PubMed Central  Google Scholar 

  9. Casellini CM, Barlow PM, Rice AL, Casey M, Simmons K, Pittenger G et al (2007) A 6-month, randomized, double-masked, placebo-controlled study evaluating the effects of the protein kinase C-beta inhibitor ruboxistaurin on skin microvascular blood flow and other measures of diabetic peripheral neuropathy. Diabetes Care 30:896–902. https://doi.org/10.2337/dc06-1699

    Article  CAS  PubMed  Google Scholar 

  10. Casellini CM, Parson HK, Hodges K, Edwards JF, Lieb DC, Wohlgemuth SD et al (2016) Bariatric surgery restores cardiac and sudomotor autonomic C-fiber dysfunction towards normal in obese subjects with type 2 diabetes. PLoS ONE 11:e0154211. https://doi.org/10.1371/journal.pone.0154211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cerles O, Goncalves TC, Chouzenoux S, Benoit E, Schmitt A, Bennett Saidu NE et al (2019) Preventive action of benztropine on platinum-induced peripheral neuropathies and tumor growth. Acta Neuropathol Commun 7:9. https://doi.org/10.1186/s40478-019-0657-y

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dhage S, Ferdousi M, Adam S, Ho JH, Kalteniece A, Azmi S et al (2021) Corneal confocal microscopy identifies small fibre damage and progression of diabetic neuropathy. Sci Rep 11:1859. https://doi.org/10.1038/s41598-021-81302-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duong V, Iwamoto A, Pennycuff J, Kudish B, Iglesia C (2021) A systematic review of neurocognitive dysfunction with overactive bladder medications. Int Urogynecol J 32:2693–2702. https://doi.org/10.1007/s00192-021-04909-5

    Article  PubMed  Google Scholar 

  14. Ekman L, Thrainsdottir S, Englund E, Thomsen N, Rosen I, Hazer Rosberg DB et al (2020) Evaluation of small nerve fiber dysfunction in type 2 diabetes. Acta Neurol Scand 141:38–46. https://doi.org/10.1111/ane.13171

    Article  CAS  PubMed  Google Scholar 

  15. Emery SM, Dobrowsky RT (2016) Promoting neuronal tolerance of diabetic stress: modulating molecular chaperones. Int Rev Neurobiol 127:181–210. https://doi.org/10.1016/bs.irn.2016.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ferreira-Valente MA, Pais-Ribeiro JL, Jensen MP (2011) Validity of four pain intensity rating scales. Pain 152:2399–2404. https://doi.org/10.1016/j.pain.2011.07.005

    Article  PubMed  Google Scholar 

  17. Gibbons CH, Illigens BM, Wang N, Freeman R (2010) Quantification of sudomotor innervation: a comparison of three methods. Muscle Nerve 42:112–119. https://doi.org/10.1002/mus.21626

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gibbons CH, Zhu J, Zhang X, Habboubi N, Hariri R, Veves A (2021) Phase 2a randomized controlled study investigating the safety and efficacy of PDA-002 in diabetic peripheral neuropathy. J Peripher Nerv Syst 26:276–289. https://doi.org/10.1111/jns.12457

    Article  CAS  PubMed  Google Scholar 

  19. Goncalves NP, Vaegter CB, Andersen H, Ostergaard L, Calcutt NA, Jensen TS (2017) Schwann cell interactions with axons and microvessels in diabetic neuropathy. Nat Rev Neurol 13:135–147. https://doi.org/10.1038/nrneurol.2016.201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han MM, Frizzi KE, Ellis RJ, Calcutt NA, Fields JA (2021) Prevention of HIV-1 TAT protein-induced peripheral neuropathy and mitochondrial disruption by the antimuscarinic pirenzepine. Front Neurol 12:663373. https://doi.org/10.3389/fneur.2021.663373

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jaiswal M, Martin CL, Brown MB, Callaghan B, Albers JW, Feldman EL et al (2015) Effects of exenatide on measures of diabetic neuropathy in subjects with type 2 diabetes: results from an 18-month proof-of-concept open-label randomized study. J Diabetes Complicat 29:1287–1294. https://doi.org/10.1016/j.jdiacomp.2015.07.013

    Article  Google Scholar 

  22. Jolivalt CG, Frizzi KE, Guernsey L, Marquez A, Ochoa J, Rodriguez M et al (2016) Peripheral neuropathy in mouse models of diabetes. Curr Protoc Mouse Biol 6:223–255. https://doi.org/10.1002/cpmo.11

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jolivalt CG, Frizzi KE, Han MM, Mota AJ, Guernsey LS, Kotra LP et al (2020) Topical delivery of muscarinic receptor antagonists prevents and reverses peripheral neuropathy in female diabetic mice. J Pharmacol Exp Ther 374:44–51. https://doi.org/10.1124/jpet.120.265447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jolivalt CG, Han MM, Nguyen A, Desmond F, Alves Jesus CH, Vasconselos DC et al (2022) Using corneal confocal microscopy to identify therapeutic agents for diabetic neuropathy. J Clin Med. https://doi.org/10.3390/jcm11092307

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kluding PM, Pasnoor M, Singh R, Jernigan S, Farmer K, Rucker J et al (2012) The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy. J Diabetes Complicat 26:424–429. https://doi.org/10.1016/j.jdiacomp.2012.05.007

    Article  Google Scholar 

  26. Kobayashi M, Zochodne DW (2020) Diabetic polyneuropathy: Bridging the translational gap. J Peripher Nerv Syst 25:66–75. https://doi.org/10.1111/jns.12392

    Article  CAS  PubMed  Google Scholar 

  27. Lauria G, Bakkers M, Schmitz C, Lombardi R, Penza P, Devigili G et al (2010) Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study. J Peripher Nerv Syst 15:202–207. https://doi.org/10.1111/j.1529-8027.2010.00271.x

    Article  PubMed  Google Scholar 

  28. Lauria G, Hsieh ST, Johansson O, Kennedy WR, Leger JM, Mellgren SI et al (2010) European federation of neurological societies/peripheral nerve society guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy: report of a joint task force of the European federation of neurological societies and the peripheral nerve society. Eur J Neurol 17:903–912. https://doi.org/10.1111/j.1468-1331.2010.03023.x

    Article  CAS  PubMed  Google Scholar 

  29. Leone Roberti Maggiore U, Salvatore S, Alessandri F, Remorgida V, Origoni M, Candiani M et al (2012) Pharmacokinetics and toxicity of antimuscarinic drugs for overactive bladder treatment in females. Expert Opin Drug Metab Toxicol 8:1387–1408. https://doi.org/10.1517/17425255.2012.714365

    Article  CAS  PubMed  Google Scholar 

  30. Macdiarmid SA (2009) The evolution of transdermal/topical overactive bladder therapy and its benefits over oral therapy. Rev Urol 11:1–6

    PubMed  PubMed Central  Google Scholar 

  31. Malik RA, Tesfaye S, Newrick PG, Walker D, Rajbhandari SM, Siddique I et al (2005) Sural nerve pathology in diabetic patients with minimal but progressive neuropathy. Diabetologia 48:578–585. https://doi.org/10.1007/s00125-004-1663-5

    Article  CAS  PubMed  Google Scholar 

  32. Malmberg AB, Mizisin AP, Calcutt NA, von Stein T, Robbins WR, Bley KR (2004) Reduced heat sensitivity and epidermal nerve fiber immunostaining following single applications of a high-concentration capsaicin patch. Pain 111:360–367. https://doi.org/10.1016/j.pain.2004.07.017

    Article  CAS  PubMed  Google Scholar 

  33. Marshall AG, Lee-Kubli C, Azmi S, Zhang M, Ferdousi M, Mixcoatl-Zecuatl T et al (2017) Spinal disinhibition in experimental and clinical painful diabetic neuropathy. Diabetes 66:1380–1390. https://doi.org/10.2337/db16-1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Murakami Y, Sekijima H, Fujisawa Y, Ooi K (2019) Adjustment of conditions for combining oxybutynin transdermal patch with heparinoid cream in mice by analyzing blood concentrations of oxybutynin hydrochloride. Biol Pharm Bull 42:586–593. https://doi.org/10.1248/bpb.b18-00690

    Article  CAS  PubMed  Google Scholar 

  35. Perkins BA, Lovblom LE, Lewis EJH, Bril V, Ferdousi M, Orszag A et al (2021) Corneal Confocal microscopy predicts the development of diabetic neuropathy: a longitudinal diagnostic multinational consortium study. Diabetes Care 44:2107–2114. https://doi.org/10.2337/dc21-0476

    Article  PubMed  PubMed Central  Google Scholar 

  36. Petropoulos IN, Ponirakis G, Ferdousi M, Azmi S, Kalteniece A, Khan A et al (2021) Corneal confocal microscopy: a biomarker for diabetic peripheral neuropathy. Clin Ther 43:1457–1475. https://doi.org/10.1016/j.clinthera.2021.04.003

    Article  CAS  PubMed  Google Scholar 

  37. Pop-Busui R, Stevens MJ, Raffel DM, White EA, Mehta M, Plunkett CD et al (2013) Effects of triple antioxidant therapy on measures of cardiovascular autonomic neuropathy and on myocardial blood flow in type 1 diabetes: a randomised controlled trial. Diabetologia 56:1835–1844. https://doi.org/10.1007/s00125-013-2942-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roy Chowdhury SK, Smith DR, Saleh A, Schapansky J, Marquez A, Gomes S et al (2012) Impaired adenosine monophosphate-activated protein kinase signalling in dorsal root ganglia neurons is linked to mitochondrial dysfunction and peripheral neuropathy in diabetes. Brain 135:1751–1766. https://doi.org/10.1093/brain/aws097

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rumora AE, Guo K, Hinder LM, O’Brien PD, Hayes JM, Hur J et al (2022) A high-fat diet disrupts nerve lipids and mitochondrial function in murine models of neuropathy. Front Physiol 13:921942. https://doi.org/10.3389/fphys.2022.921942

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sabbir MG, Calcutt NA, Fernyhough P (2018) Muscarinic acetylcholine type 1 receptor activity constrains neurite outgrowth by inhibiting microtubule polymerization and mitochondrial trafficking in adult sensory neurons. Front Neurosci 12:402. https://doi.org/10.3389/fnins.2018.00402

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sabbir MG, Fernyhough P (2018) Muscarinic receptor antagonists activate ERK-CREB signaling to augment neurite outgrowth of adult sensory neurons. Neuropharmacology 143:268–281. https://doi.org/10.1016/j.neuropharm.2018.09.020

    Article  CAS  PubMed  Google Scholar 

  42. Saleh A, Sabbir MG, Aghanoori MR, Smith DR, Roy Chowdhury SK, Tessler L et al (2020) Muscarinic toxin 7 signals via Ca(2+)/calmodulin-dependent protein kinase kinase beta to augment mitochondrial function and prevent neurodegeneration. Mol Neurobiol 57:2521–2538. https://doi.org/10.1007/s12035-020-01900-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sathyan G, Hu W, Gupta SK (2001) Lack of effect of food on the pharmacokinetics of an extended-release oxybutynin formulation. J Clin Pharmacol 41:187–192. https://doi.org/10.1177/00912700122010014

    Article  CAS  PubMed  Google Scholar 

  44. Singleton JR, Bixby B, Russell JW, Feldman EL, Peltier A, Goldstein J et al (2008) The Utah early neuropathy scale: a sensitive clinical scale for early sensory predominant neuropathy. J Peripher Nerv Syst 13:218–227. https://doi.org/10.1111/j.1529-8027.2008.00180.x

    Article  PubMed  Google Scholar 

  45. Smith DS, Skene JH (1997) A transcription-dependent switch controls competence of adult neurons for distinct modes of axon growth. J Neurosci 17:646–658. https://doi.org/10.1523/JNEUROSCI.17-02-00646.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Spallone V, Ziegler D, Freeman R, Bernardi L, Frontoni S, Pop-Busui R et al (2011) Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev 27:639–653. https://doi.org/10.1002/dmrr.1239

    Article  PubMed  Google Scholar 

  47. Staskin DR, Robinson D (2009) Oxybutynin chloride topical gel: a new formulation of an established antimuscarinic therapy for overactive bladder. Expert Opin Pharmacother 10:3103–3111. https://doi.org/10.1517/14656560903451682

    Article  CAS  PubMed  Google Scholar 

  48. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology American Diabetes A (2013) Standards of medical care in diabetes–2013. Diabetes Care 36(Suppl 1):S11-66. https://doi.org/10.2337/dc13-S011

    Article  CAS  Google Scholar 

  49. Tesfaye S, Boulton AJ, Dyck PJ, Freeman R, Horowitz M, Kempler P et al (2010) Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 33:2285–2293. https://doi.org/10.2337/dc10-1303

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vinik AI, Suwanwalaikorn S, Stansberry KB, Holland MT, McNitt PM, Colen LE (1995) Quantitative measurement of cutaneous perception in diabetic neuropathy. Muscle Nerve 18:574–584. https://doi.org/10.1002/mus.880180603

    Article  CAS  PubMed  Google Scholar 

  51. Vinik EJ, Hayes RP, Oglesby A, Bastyr E, Barlow P, Ford-Molvik SL et al (2005) The development and validation of the Norfolk QOL-DN, a new measure of patients’ perception of the effects of diabetes and diabetic neuropathy. Diabetes Technol Ther 7:497–508. https://doi.org/10.1089/dia.2005.7.497

    Article  PubMed  Google Scholar 

  52. Welk B, Richardson K, Panicker JN (2021) The cognitive effect of anticholinergics for patients with overactive bladder. Nat Rev Urol 18:686–700. https://doi.org/10.1038/s41585-021-00504-x

    Article  CAS  PubMed  Google Scholar 

  53. Yagihashi S (2016) Glucotoxic mechanisms and related therapeutic approaches. Int Rev Neurobiol 127:121–149. https://doi.org/10.1016/bs.irn.2016.03.006

    Article  CAS  PubMed  Google Scholar 

  54. Yorek MS, Coppey LJ, Shevalye H, Obrosov A, Kardon RH, Yorek MA (2016) Effect of treatment with salsalate, menhaden oil, combination of salsalate and menhaden oil, or resolvin D1 of C57Bl/6J type 1 diabetic mouse on neuropathic endpoints. J Nutr Metab 2016:5905891. https://doi.org/10.1155/2016/5905891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ziegler D, Tesfaye S, Spallone V, Gurieva I, Al Kaabi J, Mankovsky B et al (2022) Screening, diagnosis and management of diabetic sensorimotor polyneuropathy in clinical practice: international expert consensus recommendations. Diabetes Res Clin Pract 186:109063. https://doi.org/10.1016/j.diabres.2021.109063

    Article  PubMed  Google Scholar 

  56. Zochodne DW (2016) Sensory neurodegeneration in diabetes: beyond glucotoxicity. Int Rev Neurobiol 127:151–180. https://doi.org/10.1016/bs.irn.2016.03.007

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by NIH award DK102032 (NAC).

Author information

Authors and Affiliations

Authors

Contributions

The original project was conceived by NAC and PF. NAC, PF, CMC, HKP and AIV contributed to the design of the study. Data acquisition was performed by CMC, HKP, KEF, AM, DRS, RN, LG, AT, and JW. All authors contributed to data analysis and the original draft of the manuscript. NAC, PF, CMC, HKP, KEF and CGJ were involved in reviewing and editing the manuscript. All authors have approved the final manuscript. NAC serves as the guarantor of the work, with full access to all study data, and is responsible for the integrity and accuracy of the data analysis.

Corresponding author

Correspondence to Nigel A. Calcutt.

Ethics declarations

Conflict of interest

NAC and PF are co-founders of, and hold equity in WinSanTor Inc., a company which is developing products related to the research described in this paper. The terms of this arrangement have been reviewed and approved by the University of California, San Diego in accordance with its conflict-of-interest policies. The other authors declare that there are no relationships or activities that might bias, or be perceived to bias, their work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 506 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casselini, C.M., Parson, H.K., Frizzi, K.E. et al. A muscarinic receptor antagonist reverses multiple indices of diabetic peripheral neuropathy: preclinical and clinical studies using oxybutynin. Acta Neuropathol 147, 60 (2024). https://doi.org/10.1007/s00401-024-02710-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00401-024-02710-4

Keywords

Navigation