Skip to main content
Log in

Molecular integrators of stress and aging: the example of FKBP5

  • Scientific Commentary
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Blair LJ, Nordhues BA, Hill SE, Scaglione KM, O’Leary JC 3rd, Fontaine SN et al (2013) Accelerated neurodegeneration through chaperone-mediated oligomerization of tau. J Clin Invest 123:4158–4169. https://doi.org/10.1172/jci69003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carolina Stress Initiative. https://www.med.unc.edu/psych/csi/. Accessed 10 Mar 2023

  3. Cavalli G, Heard E (2019) Advances in epigenetics link genetics to the environment and disease. Nature 571:489–499. https://doi.org/10.1038/s41586-019-1411-0

    Article  CAS  PubMed  Google Scholar 

  4. Gaali S, Kirschner A, Cuboni S, Hartmann J, Kozany C, Balsevich G et al (2015) Selective inhibitors of the FK506-binding protein 51 by induced fit. Nat Chem Biol 11:33–37. https://doi.org/10.1038/nchembio.1699

    Article  CAS  PubMed  Google Scholar 

  5. Jaworska-Andryszewska P, Rybakowski JK (2019) Childhood trauma in mood disorders: neurobiological mechanisms and implications for treatment. Pharmacol Rep 71:112–120. https://doi.org/10.1016/j.pharep.2018.10.004

    Article  PubMed  Google Scholar 

  6. Katrinli S, Stevens J, Wani AH, Lori A, Kilaru V, van Rooij SJH et al (2020) Evaluating the impact of trauma and PTSD on epigenetic prediction of lifespan and neural integrity. Neuropsychopharmacology 45:1609–1616. https://doi.org/10.1038/s41386-020-0700-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khan D, Verschoor C, Edgell H, Rotondi M, Tamim H (2023) The association between shift work exposure and frailty among middle-aged and older adults: results from the Canadian Longitudinal Study on Aging (CLSA). J Occup Environ Med. https://doi.org/10.1097/jom.0000000000002806

  8. Kuo PL, Schrack JA, Levine ME, Shardell MD, Simonsick EM, Chia CW et al (2022) Longitudinal phenotypic aging metrics in the Baltimore Longitudinal Study of Aging. Nat Aging 2:635–643. https://doi.org/10.1038/s43587-022-00243-7

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lee RS, Tamashiro KL, Yang X, Purcell RH, Huo Y, Rongione M et al (2011) A measure of glucocorticoid load provided by DNA methylation of Fkbp5 in mice. Psychopharmacology 218:303–312. https://doi.org/10.1007/s00213-011-2307-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee TI, Young RA (2013) Transcriptional regulation and its misregulation in disease. Cell 152:1237–1251. https://doi.org/10.1016/j.cell.2013.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leung CS, Kosyk O, Welter EM, Dietrich N, Archer TK, Zannas AS (2022) Chronic stress-driven glucocorticoid receptor activation programs key cell phenotypes and functional epigenomic patterns in human fibroblasts. iScience 25:104960. https://doi.org/10.1016/j.isci.2022.104960

  12. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matosin N, Arloth J, Czamara D, Edmond KZ, Maitra M, Fröhlich AS et al (2023) Associations of psychiatric disease and ageing with FKBP5 expression converge on superficial layer neurons of the neocortex. Acta Neuropathol. https://doi.org/10.1007/s00401-023-02541-9

  14. Misiak B, Karpiński P, Szmida E, Grąźlewski T, Jabłoński M, Cyranka K et al (2020) Adverse childhood experiences and methylation of the fkbp5 gene in patients with psychotic disorders. J Clin Med 9(12):3792. https://doi.org/10.3390/jcm9123792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Molina N, Suter DM, Cannavo R, Zoller B, Gotic I, Naef F (2013) Stimulus-induced modulation of transcriptional bursting in a single mammalian gene. Proc Natl Acad Sci U S A 110:20563–20568. https://doi.org/10.1073/pnas.1312310110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Park C, Rosenblat JD, Brietzke E, Pan Z, Lee Y, Cao B et al (2019) Stress, epigenetics and depression: a systematic review. Neurosci Biobehav Rev 102:139–152. https://doi.org/10.1016/j.neubiorev.2019.04.010

    Article  CAS  PubMed  Google Scholar 

  17. Provencal N, Arloth J, Cattaneo A, Anacker C, Cattane N, Wiechmann T et al (2019) Glucocorticoid exposure during hippocampal neurogenesis primes future stress response by inducing changes in DNA methylation. Proc Natl Acad Sci U S A 117(38):23280–23285. https://doi.org/10.1073/pnas.1820842116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sabbagh JJ, O'Leary JC, 3rd, Blair LJ, Klengel T, Nordhues BA, Fontaine SN et al (2014) Age-associated epigenetic upregulation of the FKBP5 gene selectively impairs stress resiliency. PLoS One 9:e107241. https://doi.org/10.1371/journal.pone.0107241

  19. Trans-NIH Geroscience Interest Group (GSIG). https://www.nia.nih.gov/gsig. Accessed 10 Mar 2023

  20. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854. https://doi.org/10.1038/nn1276

    Article  CAS  PubMed  Google Scholar 

  21. Wochnik GM, Rüegg J, Abel GA, Schmidt U, Holsboer F, Rein T (2005) FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J Biol Chem 280:4609–4616. https://doi.org/10.1074/jbc.M407498200

    Article  CAS  PubMed  Google Scholar 

  22. World Health Organization (2022) Noncommunicable Diseases Progress Monitor 2022. In: World Health Organization (ed), Geneva

  23. Zannas AS (2021) Naturalistic stress hormone levels drive cumulative epigenomic changes along the cellular lifespan. Int J Mol Sci 22(16):8778. https://doi.org/10.3390/ijms22168778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zannas AS, Arloth J, Carrillo-Roa T, Iurato S, Röh S, Ressler KJ et al (2015) Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol 16:266. https://doi.org/10.1186/s13059-015-0828-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zannas AS, Jia M, Hafner K, Baumert J, Wiechmann T, Pape JC et al (2019) Epigenetic upregulation of FKBP5 by aging and stress contributes to NF-kappaB-driven inflammation and cardiovascular risk. Proc Natl Acad Sci U S A 116:11370–11379. https://doi.org/10.1073/pnas.1816847116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zannas AS, Wiechmann T, Gassen NC, Binder EB (2016) Gene-stress-epigenetic regulation of FKBP5: clinical and translational implications. Neuropsychopharmacology 41:261–274. https://doi.org/10.1038/npp.2015.235

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony S. Zannas.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zannas, A.S. Molecular integrators of stress and aging: the example of FKBP5. Acta Neuropathol 145, 713–715 (2023). https://doi.org/10.1007/s00401-023-02572-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-023-02572-2

Keywords

Navigation