Skip to main content

Advertisement

Log in

Consequences of variability in α-synuclein fibril structure on strain biology

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Synucleinopathies are a group of clinically and neuropathologically distinct protein misfolding diseases caused by unique α-synuclein conformations, or strains. While multiple atomic resolution cryo-electron microscopy structures of α-synuclein fibrils are now deposited in Protein Data Bank, significant gaps in the biological consequences arising from each conformation have yet to be unraveled. Mutations in the α-synuclein gene (SNCA), cofactors, and the solvation environment contribute to the formation and maintenance of each disease-causing strain. This review highlights the impact of each of these factors on α-synuclein misfolding and discusses the implications of the resulting structural variability on therapeutic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Allison JR, Varnai P, Dobson CM, Vendruscolo M (2009) Determination of the free energy landscape of alpha-synuclein using spin label nuclear magnetic resonance measurements. J Am Chem Soc 131(51):18314–18326

    CAS  PubMed  Google Scholar 

  2. Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ et al (2006) Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281:29739–29752

    CAS  PubMed  Google Scholar 

  3. Appel-Cresswell S, Vilarino-Guell C, Encarnacion M, Sherman H, Yu I, Shah B et al (2013) Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov Disord 28(6):811–813

    CAS  PubMed  Google Scholar 

  4. Arias E, Heron M, Xu J (2017) United States life tables, 2014. Natl Vital Stat Rep 66:1–64

    PubMed  Google Scholar 

  5. Asi YT, Simpson JE, Heath PR, Wharton SB, Lees AJ, Revesz T et al (2014) Alpha-synuclein mRNA expression in oligodendrocytes in MSA. Glia 62(6):964–970

    PubMed  PubMed Central  Google Scholar 

  6. Bandres-Ciga S, Diez-Fairen M, Kim JJ, Singleton AB (2020) Genetics of Parkinson’s disease: an introspection of its journey towards precision medicine. Neurobiol Dis 137:104782

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bartels T, Ahlstrom LS, Leftin A, Kamp F, Haass C, Brown MF et al (2010) The N-terminus of the intrinsically disordered protein α-synuclein triggers membrane binding and helix folding. Biophys J 99(7):2116–2124

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bartz JC (2017) Prion strain diversity. In: Prusiner SB (ed) Prion diseases. Cold Spring Harbor Laboratory Press, New York, pp 31–44

    Google Scholar 

  9. Berry DB, Lu D, Geva M, Watts JC, Bhardwaj S, Oehler A et al (2013) Drug resistance confounding prion therapeutics. Proc Natl Acad Sci USA 110:E4160–E4169

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bertoncini CW, Jung YS, Fernandez CO, Hoyer W, Griesinger C, Jovin TM et al (2005) Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. Proc Natl Acad Sci USA 102(5):1430–1435

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Boyer DR, Li B, Sun C, Fan W, Sawaya MR, Jiang L et al (2019) Structures of fibrils formed by α-synuclein hereditary disease mutant H50Q reveal new polymorphs. Nat Struct Mol Biol 26(11):1044–1052

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Boyer DR, Li B, Sun C, Fan W, Zhou K, Hughes MP et al (2020) The α-synuclein hereditary mutation E46K unlocks a more stable, pathogenic fibril structure. Proc Natl Acad Sci USA 117:3592–3602

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    PubMed  Google Scholar 

  14. Bradford BM, Wijaya CAW, Mabbott NA (2019) Discrimination of prion strain targeting in the central nervous system via reactive astrocyte heterogeneity in CD44 expression. Front Cell Neurosci 13:411

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Brahmachari S, Ge P, Lee SH, Kim D, Karuppagounder SS, Kumar M et al (2016) Activation of tyrosine kinase c-Abl contributes to α-synuclein-induced neurodegeneration. J Clin Invest 126(8):2970–2988

    PubMed  PubMed Central  Google Scholar 

  16. Budka H (2003) Neuropathology of prion diseases. Br Med Bull 66:121–130

    CAS  PubMed  Google Scholar 

  17. Burré J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Südhof TC (2010) Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329(5999):1663–1667

    PubMed  PubMed Central  Google Scholar 

  18. Bussell R Jr, Ramlall TF, Eliezer D (2005) Helix periodicity, topology, and dynamics of membrane-associated alpha-synuclein. Protein Sci 14(4):862–872

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chandra S, Chen X, Rizo J, Jahn R, Südhof TC (2003) A broken α-helix in folded α-synuclein. J Biol Chem 278:15313–15318

    CAS  PubMed  Google Scholar 

  20. Collinge J, Clarke AR (2007) A general model of prion strains and their pathogenicity. Science 318:930–936

    CAS  PubMed  Google Scholar 

  21. Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273(16):9443–9449

    CAS  PubMed  Google Scholar 

  22. Djelloul M, Holmqvist S, Boza-Serrano A, Azevedo C, Yeung MS, Goldwurm S et al (2015) Alpha-synuclein expression in the oligodendrocyte lineage: an in vitro and in vivo study using rodent and human models. Stem Cell Reports 5(2):174–184

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Domingo E, Perales C (2019) Viral quasispecies. PLoS Genet 15:e1008271

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Domingo E, Sabo D, Taniguchi T, Weissmann C (1978) Nucleotide sequence heterogeneity of an RNA phage population. Cell 13:735–744

    CAS  PubMed  Google Scholar 

  25. Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523

    CAS  PubMed  Google Scholar 

  26. Eliezer D, Kutluay E, Bussell R Jr, Browne G (2001) Conformational properties of alpha-synuclein in its free and lipid-associated states. J Mol Biol 307(4):1061–1073

    CAS  PubMed  Google Scholar 

  27. Fares M-B, Ait-Bouziad N, Dikiy I, Mbefo MK, Jovičić A, Kiely A et al (2014) The novel Parkinson’s disease linked mutation G51D attenuates in vitro aggregation and membrane binding of α-synuclein, and enhances its secretion and nuclear localization in cells. Hum Mol Genet 23:4491–4509

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ferreon AC, Gambin Y, Lemke EA, Deniz AA (2009) Interplay of alpha-synuclein binding and conformational switching probed by single-molecule fluorescence. Proc Natl Acad Sci USA 106(14):5645–5650

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fevga C, Park Y, Lohmann E, Kievit AJ, Breedveld GJ, Ferraro F et al (2021) A new alpha-synuclein missense variant (Thr72Met) in two Turkish families with Parkinson’s disease. Parkinsonism Relat Disord 89:63–72

    PubMed  PubMed Central  Google Scholar 

  30. Forster E, Lewy FH (1912) Paralysis agitans. In: Lewandowsky M (ed) Pathologische anatomie handbuch der neurologie. Springer Verlag, New York, pp 920–933

    Google Scholar 

  31. Fortin DL, Nemani VM, Voglmaier SM, Anthony MD, Ryan TA, Edwards RH (2005) Neural activity controls the synaptic accumulation of alpha-synuclein. J Neurosci 25(47):10913–10921

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fraser H (1979) Neuropathology of scrapie: the precision of the lesions and their diversity. In: Prusiner SB, Hadlow WJ (eds) Slow transmissible diseases of the nervous system, vol 1. Academic Press, New York, pp 387–406

    Google Scholar 

  33. Frieg B, Geraets JA, Strohäker T, Dienemann C, Mavroeidi P, Jung BC et al (2021) α-synuclein polymorphism determines oligodendroglial dysfunction. bioRxiv. https://doi.org/10.1101/2021.07.09.451731

    Article  Google Scholar 

  34. Ghaemmaghami S, May BCH, Renslo AR, Prusiner SB (2010) Discovery of 2-aminothiazoles as potent antiprion compounds. J Virol 84:3408–3412

    CAS  PubMed  Google Scholar 

  35. Ghosh D, Sahay S, Ranjan P, Salot S, Mohite GM, Singh PK et al (2014) The newly discovered Parkinson’s disease associated Finnish mutation (A53E) attenuates α-synuclein aggregation and membrane binding. Biochemistry 53(41):6419–6421

    CAS  PubMed  Google Scholar 

  36. Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM (2002) Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. Neuron 34:521–533

    CAS  PubMed  Google Scholar 

  37. Giasson BI, Murray IV, Trojanowski JQ, Lee VM (2001) A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J Biol Chem 276(4):2380–2386

    CAS  PubMed  Google Scholar 

  38. Gilman S, Low PA, Quinn N, Albanese A, Ben-Shlomo Y, Fowler CJ et al (1999) Consensus statement on the diagnosis of multiple system atrophy. J Neurol Sci 163:94–98

    CAS  PubMed  Google Scholar 

  39. Gilman S, May SJ, Shults CW, Tanner CM, Kukull W, Lee VM-Y et al (2005) The north American multiple system atrophy study group. J Neural Transm (Vienna) 112:1687–1694

    CAS  Google Scholar 

  40. Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ et al (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71:670–676

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gokarn YR, Fesinmeyer RM, Saluja A, Razinkov V, Chase SF, Laue TM et al (2011) Effective charge measurements reveal selective and preferential accumulation of anions, but not cations, at the protein surface in dilute salt solutions. Protein Sci 20:580–587

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Guerrero-Ferreira R, Taylor NM, Arteni AA, Kumari P, Mona D, Ringler P et al (2019) Two new polymorphic structures of human full-length alpha-synuclein fibrils solved by cryo-electron microscopy. Elife 8:e48907

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Guerrero-Ferreira R, Taylor NM, Mona D, Ringler P, Lauer ME, Riek R et al (2018) Cryo-EM structure of alpha-synuclein fibrils. Elife 7:e36402

    PubMed  PubMed Central  Google Scholar 

  44. He S, Scheres SHW (2017) Helical reconstruction in RELION. J Struct Biol 198:163–176

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Holec SAM, Woerman AL (2020) Evidence of distinct α-synuclein strains underlying disease heterogeneity. Acta Neuropathol 142(1):73–86

    CAS  PubMed  Google Scholar 

  46. Hutchinson EG, Thonton JM (1993) The Greek key motif: extraction, classification, and analysis. Protein Eng 6:233–245

    CAS  PubMed  Google Scholar 

  47. Jao CC, Der-Sarkissian A, Chen J, Langen R (2004) Structure of membrane-bound alpha-synuclein studied by site-directed spin labeling. Proc Natl Acad Sci USA 101(22):8331–8336

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kiely AP, Asi YT, Kara E, Limousin P, Ling H, Lewis P et al (2013) α-synucleinopathy associated with G51D SNCA mutation: a link between Parkinson’s disease and multiple system atrophy? Acta Neuropathol 125:753–769

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Koros C, Stamelou M, Simitsi A, Beratis I, Papadimitriou D, Papagiannakis N et al (2018) Selective cognitive impairment and hyposmia in p.A53T SNCA PD vs typical PD. Neurology 90:e864–e869

    PubMed  Google Scholar 

  50. Kruger R, Kuhn W, Leenders KL, Sprengelmeyer R, Muller T, Woitalla D et al (2001) Familial parkinsonism with synuclein pathology: clinical and PET studies of A30P mutation carriers. Neurology 56:1355–1362

    CAS  PubMed  Google Scholar 

  51. Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108

    PubMed  Google Scholar 

  52. Kuzdas-Wood D, Stefanova N, Jellinger KA, Seppi K, Schlossmacher MG, Poewe W et al (2014) Towards translational therapies for multiple system atrophy. Prog Neurobiol 118:19–35

    PubMed  PubMed Central  Google Scholar 

  53. Lau A, So RWL, Lau HHC, Sang JC, Ruiz-Riquelme A, Fleck SC et al (2020) α-Synuclein strains target distinct brain regions and cell types. Nat Neurosci 23(1):21–31

    CAS  PubMed  Google Scholar 

  54. Lazaro DF, Dias MC, Carija A, Navarro S, Madaleno CS, Tenreiro S et al (2016) The effects of the novel A53E alpha-synuclein mutation on its oligomerization and aggregation. Acta Neuropathol Commun 4(1):128

    PubMed  PubMed Central  Google Scholar 

  55. Lesage S, Anheim M, Letournel F, Bousset L, Honoré A, Rozas N et al (2013) G51D α-synuclein mutation causes a novel parkinsonian–pyramidal syndrome. Ann Neurol 73:459–471

    CAS  PubMed  Google Scholar 

  56. Lesage S, Brice A (2009) Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet 18:R48-59

    CAS  PubMed  Google Scholar 

  57. Levine PM, Galesic A, Balana AT, Mahul-Mellier AL, Navarro MX, De Leon CA et al (2019) α-Synuclein O-GlcNAcylation alters aggregation and toxicity, revealing certain residues as potential inhibitors of Parkinson’s disease. Proc Natl Acad Sci USA 116(5):1511–1519

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Li B, Ge P, Murray KA, Sheth P, Zhang M, Nair G et al (2018) Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common structural kernel. Nat Commun 9:3609

    PubMed  PubMed Central  Google Scholar 

  59. Li J, Browning S, Mahal SP, Oelschlegel AM, Weissmann C (2010) Darwinian evolution of prions in cell culture. Science 327:869–872

    CAS  PubMed  Google Scholar 

  60. Li J, Mahal SP, Demczyk CA, Weissmann C (2011) Mutability of prions. EMBO Rep 12:1243–1250

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Li Y, Zhao C, Luo F, Liu Z, Gui X, Luo Z et al (2018) Amyloid fibril structure of α-synuclein determined by cryo-electron microscopy. Cell Res 28:897–903

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu H, Koros C, Strohaker T, Schulte C, Bozi M, Varvaresos S et al (2021) A novel SNCA A30G mutation causes familial Parkinson’s disease. Mov Disord 36(7):1624–1633

    CAS  PubMed  Google Scholar 

  63. Logan T, Bendor J, Toupin C, Thorn K, Edwards RH (2017) α-synuclein promotes dilation of the exocytotic fusion pore. Nat Neurosci 20:681–689

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Long H, Zheng W, Liu Y, Sun Y, Zhao K, Liu Z et al (2021) Wild-type α-synuclein inherits the structure and exacerbated neuropathology of E46K mutant fibril strain by cross-seeding. Proc Natl Acad Sci USA 118(20):e2012435118

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lövestam S, Schweighauser M, Matsubara T, Murayama S, Tomita T, Ando T et al (2021) Seeded assembly in vitro does not replicate the structures of α-synuclein filaments from multiple system atrophy. FEBS Open Bio 11(4):999–1013

    PubMed  PubMed Central  Google Scholar 

  66. Mahal SP, Baker CA, Demczyk CA, Smith EW, Julius C, Weissmann C (2007) Prion strain discrimination in cell culture: the cell panel assay. Proc Natl Acad Sci USA 104:20908–20913

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Martikainen MH, Paivarinta M, Hietala M, Kaasinen V (2015) Clinical and imaging findings in Parkinson disease associated with the A53E SNCA mutation. Neurol Genet 1:e27

    PubMed  PubMed Central  Google Scholar 

  68. McKeith IG, Boeve BF, Dickson DW, Halliday GM, Taylor JP, Weintraub D et al (2017) Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 89:88–100

    PubMed  PubMed Central  Google Scholar 

  69. McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB consortium. Neurology 65:1863–1872

    CAS  PubMed  Google Scholar 

  70. Medda L, Barse B, Cugia F, Bostrom M, Parsons DF, Ninham BW et al (2012) Hofmeister challenges: ion binding and charge of the BSA protein as explicit examples. Langmuir 28:16355–16363

    CAS  PubMed  Google Scholar 

  71. Medda L, Carucci C, Parsons DF, Ninham BW, Monduzzi M, Salis A (2013) Specific cation effects on hemoglobin aggregation below and at physiological salt concentration. Langmuir 29:15350–15358

    CAS  PubMed  Google Scholar 

  72. Miller DW, Johnson JM, Solano SM, Hollingsworth ZR, Standaert DG, Young AB (2005) Absence of alpha-synuclein mRNA expression in normal and multiple system atrophy oligodendroglia. J Neural Transm 112(12):1613–1624

    CAS  PubMed  Google Scholar 

  73. Mohite GM, Kumar R, Panigrahi R, Navalkar A, Singh N, Datta D et al (2018) Comparison of kinetics, toxicity, oligomer formation, and membrane binding capacity of α-synuclein familial mutations at the A53 site, including the newly discovered A53V mutation. Biochemistry 57(35):5183–5187

    CAS  PubMed  Google Scholar 

  74. Narhi L, Wood SJ, Steavenson S, Jiang Y, Wu GM, Anafi D et al (1999) Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J Biol Chem 274(14):9843–9846

    CAS  PubMed  Google Scholar 

  75. Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK et al (2010) Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65(1):66–79

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ni X, McGlinchey RP, Jiang J, Lee JC (2019) Structural insights into α-synuclein fibril polymorphism: effects of Parkinson’s disease-related C-terminal truncations. J Mol Biol 431(19):3913–3919

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Nielsen SB, Macchi F, Raccosta S, Langkilde AE, Giehm L, Kyrsting A et al (2013) Wildtype and A30P mutant alpha-synuclein form different fibril structures. PLoS ONE 8(7):e67713

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Papp MI, Kahn JE, Lantos PL (1989) Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci 94:79–100

    CAS  PubMed  Google Scholar 

  79. Parkinson J (1817) An essay on the shaking palsy. Sherwood, Neely, and Jones, New York

    Google Scholar 

  80. Pasanen P, Myllykangas L, Siitonen M, Raunio A, Kaakkola S, Lyytinen J et al (2014) A novel α-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson’s disease-type pathology. Neurobiol Aging 35:2180.e2181-2180.e2185

    Google Scholar 

  81. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A et al (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047

    CAS  PubMed  Google Scholar 

  82. Proukakis C, Dudzik CG, Brier T, MacKay DS, Cooper JM, Millhauser GL et al (2013) A novel α-synuclein missense mutation in Parkinson disease. Neurology 80(11):1062–1064

    PubMed  PubMed Central  Google Scholar 

  83. Prusiner SB, Woerman AL, Mordes DA, Watts JC, Rampersaud R, Berry DB et al (2015) Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci USA 112:E5308–E5317

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Rao JN, Jao CC, Hegde BG, Langen R, Ulmer TS (2010) A combinatorial NMR and EPR approach for evaluating the structural ensemble of partially folded proteins. J Am Chem Soc 132:8657–8668

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Rodriguez JA, Ivanova MI, Sawaya MR, Cascio D, Reyes FE, Shi D et al (2015) Structure of the toxic core of α-synuclein from invisible crystals. Nature 525:486–490

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Rosborough K, Patel N, Kalia LV (2017) α-synuclein and Parkinsonism: updates and future perspectives. Curr Neurol Neurosci Rep 17(4):31

    PubMed  Google Scholar 

  87. Rutherford NJ, Giasson BI (2015) The A53E α-synuclein pathological mutation demonstrates reduced aggregation propensity in vitro and in cell culture. Neurosci Lett 597:43–48

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Rutherford NJ, Moore BD, Golde TE, Giasson BI (2014) Divergent effects of the H50Q and G51D SNCA mutations on the aggregation of α-synuclein. J Neurochem 131(6):859–867

    CAS  PubMed  Google Scholar 

  89. Sacino AN, Brooks M, Thomas MA, McKinney AB, McGarvey NH, Rutherford NJ et al (2014) Amyloidogenic α-synuclein seeds do not invariably induce rapid, widespread pathology in mice. Acta Neuropathol 127(5):645–665

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Salis A, Cappai L, Carucci C, Parsons DF, Monduzzi M (2020) Specific buffer effects on the intermolecular interactions among protein molecules at physiological pH. J Phys Chem Lett 11:6805–6811

    CAS  PubMed  Google Scholar 

  91. Scheres SHW (2020) Amyloid structure determination in RELION-3.1. Acta Crystallogr D Struct Biol 76:94–101

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Schweighauser M, Shi Y, Tarutani A, Kametani F, Murzin AG, Ghetti B et al (2020) Structures of α-synuclein filaments from multiple system atrophy. Nature 585(7825):464–469

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Shahnawaz M, Mukherjee A, Pritzkow S, Mendez N, Rabadia P, Liu X et al (2020) Discriminating α-synuclein strains in Parkinson’s disease and multiple system atrophy. Nature 578(7794):273–277

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Spillantini MG, Schmidt ML, Lee VM-Y, Trojanowski JQ, Jakes R, Goedert M (1997) α-synuclein in Lewy bodies. Nature 388:839–840

    CAS  PubMed  Google Scholar 

  95. Strohaker T, Jung BC, Liou SH, Fernandez CO, Riedel D, Becker S et al (2019) Structural heterogeneity of α-synuclein fibrils amplified from patient brain extracts. Nat Commun 10(1):5535

    PubMed  PubMed Central  Google Scholar 

  96. Sun Y, Hou S, Zhao K, Long H, Liu Z, Gao J et al (2020) Cryo-EM structure of full-length α-synuclein amyloid fibril with Parkinson’s disease familial A53T mutation. Cell Res 30(4):360–362

    PubMed  PubMed Central  Google Scholar 

  97. Sun Y, Long H, Xia W, Wang K, Zhang X, Sun B et al (2021) The hereditary mutation G51D unlocks a distinct fibril strain transmissible to wild-type α-synuclein. Nat Commun 12(1):6252

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Telling GC, Parchi P, DeArmond SJ, Cortelli P, Montagna P, Gabizon R et al (1996) Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 274:2079–2082

    CAS  PubMed  Google Scholar 

  99. Tran J, Anastacio H, Bardy C (2020) Genetic predispositions of Parkinson’s disease revealed in patient-derived brain cells. NPJ Parkinsons Dis 6:8

    PubMed  PubMed Central  Google Scholar 

  100. Tuttle MD, Comellas G, Nieuwkoop AJ, Covell DJ, Berthold DA, Kloepper KD et al (2016) Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat Struct Mol Biol 23(5):409–415

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Uéda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M et al (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA 90:11282–11286

    PubMed  PubMed Central  Google Scholar 

  102. Ulmer TS, Bax A, Cole NB, Nussbaum RL (2005) Structure and dynamics of micelle-bound human alpha-synuclein. J Biol Chem 280(10):9595–9603

    CAS  PubMed  Google Scholar 

  103. Vargas KJ, Makani S, Davis T, Westphal CH, Castillo PE, Chandra SS (2014) Synucleins regulate the kinetics of synaptic vesicle endocytosis. J Neurosci 34:9364–9376

    PubMed  PubMed Central  Google Scholar 

  104. Vargas KJ, Schrod N, Davis T, Fernandez-Busnadiego R, Taguchi YV, Laugks U et al (2017) Synucleins have multiple effects on presynaptic architecture. Cell Rep 18:161–173

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Watts JC, Giles K, Oehler A, Middleton L, Dexter DT, Gentleman SM et al (2013) Transmission of multiple system atrophy prions to transgenic mice. Proc Natl Acad Sci USA 110:19555–19560

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Woerman AL, Kazmi SA, Patel S, Aoyagi A, Oehler A, Widjaja K et al (2018) Familial Parkinson’s point mutation abolishes multiple system atrophy prion replication. Proc Natl Acad Sci USA 115:409–414

    CAS  PubMed  Google Scholar 

  107. Woerman AL, Kazmi SA, Patel S, Freyman Y, Oehler A, Aoyagi A et al (2018) MSA prions exhibit remarkable stability and resistance to inactivation. Acta Neuropathol 135:49–63

    CAS  PubMed  Google Scholar 

  108. Woerman AL, Oehler A, Kazmi SA, Lee J, Halliday GM, Middleton LT et al (2019) Multiple system atrophy prions retain strain specificity after serial propagation in two different Tg(SNCA*A53T) mouse lines. Acta Neuropathol 137:437–454

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Wu KP, Weinstock DS, Narayanan C, Levy RM, Baum J (2009) Structural reorganization of alpha-synuclein at low pH observed by NMR and REMD simulations. J Mol Biol 391(4):784–796

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Yonetani M, Nonaka T, Masuda M, Inukai Y, Oikawa T, Hisanaga S et al (2009) Conversion of wild-type alpha-synuclein into mutant-type fibrils and its propagation in the presence of A30P mutant. J Biol Chem 284:7940–7950

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Yoshino H, Hirano M, Stoessl AJ, Imamichi Y, Ikeda A, Li Y et al (2017) Homozygous alpha-synuclein p.A53V in familial Parkinson’s disease. Neurobiol Aging 57:248

    PubMed  Google Scholar 

  112. Zarranz JJ, Alegre J, Gómez-Esteban JC, Lezcano E, Ros R, Ampuero I et al (2004) The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173

    CAS  PubMed  Google Scholar 

  113. Zhao K, Li Y, Liu Z, Long H, Zhao C, Luo F et al (2020) Parkinson’s disease associated mutation E46K of α-synuclein triggers the formation of a distinct fibril structure. Nat Commun 11:2643

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhao K, Lim YJ, Liu Z, Long H, Sun Y, Hu JJ et al (2020) Parkinson’s disease-related phosphorylation at Tyr39 rearranges α-synuclein amyloid fibril structure revealed by cryo-EM. Proc Natl Acad Sci USA 117:20305–20315

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Woerman Lab is supported by a Venture Grant (668-2020-06) from the CurePSP Foundation and the University of Massachusetts Amherst (A.L.W.). We thank Dr. Steven H. Olson for his thoughtful feedback on and intellectual discussions about the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda L. Woerman.

Ethics declarations

Conflict of interest

A.L.W. is a member of Acta Neuropathologica’s Editorial Board. They were not involved in the assessment or decision-making process for this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holec, S.A.M., Liu, S.L. & Woerman, A.L. Consequences of variability in α-synuclein fibril structure on strain biology. Acta Neuropathol 143, 311–330 (2022). https://doi.org/10.1007/s00401-022-02403-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-022-02403-w

Keywords

Navigation