Skip to main content

Advertisement

Log in

Dipeptide repeat protein and TDP-43 pathology along the hypothalamic–pituitary axis in C9orf72 and non-C9orf72 ALS and FTLD-TDP cases

  • Correspondence
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Ash PEA, Bieniek KF, Gendron TF, Caulfield T, Lin W-L, DeJesus-Hernandez M et al (2013) Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77:639–646. https://doi.org/10.1016/j.neuron.2013.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Balendra R, Isaacs AM (2018) C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat Rev Neurol 14:544–558. https://doi.org/10.1038/s41582-018-0047-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bilic E, Bilic E, Rudan I, Kusec V, Zurak N, Delimar D et al (2006) Comparison of the growth hormone, IGF-1 and insulin in cerebrospinal fluid and serum between patients with motor neuron disease and healthy controls. Eur J Neurol 13:1340–1345. https://doi.org/10.1111/j.1468-1331.2006.01503.x

    Article  CAS  PubMed  Google Scholar 

  4. Cykowski MD, Takei H, Schulz PE, Appel SH, Powell SZ (2014) TDP-43 pathology in the basal forebrain and hypothalamus of patients with amyotrophic lateral sclerosis. Acta Neuropathol Commun 2:171. https://doi.org/10.1186/s40478-014-0171-1

    Article  PubMed  PubMed Central  Google Scholar 

  5. De Pablo-Fernandez E, Courtney R, Holton JL, Warner TT (2017) Hypothalamic α-synuclein and its relation to weight loss and autonomic symptoms in Parkinson’s disease. Mov Disord 32:296–298. https://doi.org/10.1002/mds.26868

    Article  CAS  PubMed  Google Scholar 

  6. Dedeene L, Van Schoor E, Race V, Moisse M, Vandenberghe R, Poesen K et al (2019) An ALS case with 38 (G4C2)-repeats in the C9orf72 gene shows TDP-43 and sparse dipeptide repeat protein pathology. Acta Neuropathol 137:855–858. https://doi.org/10.1007/s00401-019-01996-z

    Article  CAS  PubMed  Google Scholar 

  7. Dedeene L, Van Schoor E, Vandenberghe R, Van Damme P, Poesen K, Thal DR (2019) Circadian sleep/wake-associated cells show dipeptide repeat protein aggregates in C9orf72-related ALS and FTLD cases. Acta Neuropathol Commun 7:189. https://doi.org/10.1186/s40478-019-0845-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256. https://doi.org/10.1016/j.neuron.2011.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. González De Aguilar JL, René F, Dupuis L, Loeffler JP (2003) Neuroendocrinology of neurodegenerative diseases: insights from transgenic mouse models. Neuroendocrinology 78:244–252. https://doi.org/10.1159/000074445

    Article  CAS  PubMed  Google Scholar 

  10. Homma T, Mochizuki Y, Mizutani T (2012) Phosphorylated α-synuclein immunoreactivity in the posterior pituitary lobe. Neuropathology 32:385–389. https://doi.org/10.1111/j.1440-1789.2011.01273.x

    Article  PubMed  Google Scholar 

  11. Irwin DJ, Abrams JY, Schonberger LB, Leschek EW, Mills JL, Lee VMY et al (2013) Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol 70:462–468. https://doi.org/10.1001/jamaneurol.2013.1933

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ishii M, Iadecola C (2015) Metabolic and non-cognitive manifestations of Alzheimers disease: the hypothalamus as both culprit and target of pathology. Cell Metab 22:761–776. https://doi.org/10.1016/j.cmet.2015.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. MacKenzie IR, Arzberger T, Kremmer E, Troost D, Lorenzl S, Mori K et al (2013) Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations. Acta Neuropathol 126:859–879. https://doi.org/10.1007/s00401-013-1181-y

    Article  CAS  PubMed  Google Scholar 

  14. Mitrofanova LB, Konovalov PV, Krylova JS, Polyakova VO, Kvetnoy IM (2017) Plurihormonal cells of normal anterior pituitary: facts and conclusions. Oncotarget 8:29282–29299. https://doi.org/10.18632/oncotarget.16502

    Article  PubMed  PubMed Central  Google Scholar 

  15. Morselli LL, Bongioanni P, Genovesi M, Licitra R, Rossi B, Murri L et al (2006) Growth hormone secretion is impaired in amyotrophic lateral sclerosis. Clin Endocrinol (Oxf) 65:385–388. https://doi.org/10.1111/j.1365-2265.2006.02609.x

    Article  CAS  Google Scholar 

  16. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133. https://doi.org/10.1126/science.1134108

    Article  CAS  PubMed  Google Scholar 

  17. Newhouse A, Chemali Z (2020) Neuroendocrine disturbances in neurodegenerative disorders: a scoping review. Psychosomatics 61:105–115. https://doi.org/10.1016/j.psym.2019.11.002

    Article  PubMed  Google Scholar 

  18. Pellecchia MT, Pivonello R, Monsurrò MR, Trojsi F, Longo K, Piccirillo G et al (2010) The GH-IGF system in amyotrophic lateral sclerosis: correlations between pituitary GH secretion capacity, insulin-like growth factors and clinical features. Eur J Neurol 17:666–671. https://doi.org/10.1111/j.1468-1331.2009.02896.x

    Article  CAS  PubMed  Google Scholar 

  19. Saberi S, Stauffer JE, Jiang J, Garcia SD, Taylor AE, Schulte D et al (2018) Sense-encoded poly-GR dipeptide repeat proteins correlate to neurodegeneration and uniquely co-localize with TDP-43 in dendrites of repeat-expanded C9orf72 amyotrophic lateral sclerosis. Acta Neuropathol 135:459–474. https://doi.org/10.1007/s00401-017-1793-8

    Article  CAS  PubMed  Google Scholar 

  20. Saccà F, Quarantelli M, Rinaldi C, Tucci T, Piro R, Perrotta G et al (2012) A randomized controlled clinical trial of growth hormone in amyotrophic lateral sclerosis: clinical, neuroimaging, and hormonal results. J Neurol 259:132–138. https://doi.org/10.1007/s00415-011-6146-2

    Article  CAS  PubMed  Google Scholar 

  21. Sakae N, Bieniek KF, Zhang YJ, Ross K, Gendron TF, Murray ME et al (2018) Poly-GR dipeptide repeat polymers correlate with neurodegeneration and clinicopathological subtypes in C9ORF72-related brain disease. Acta Neuropathol Commun 6:63. https://doi.org/10.1186/s40478-018-0564-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sampognaro PJ, Vatsavayai SC, Cosme CG, Hwang JHL, Nolan A, Huang EJ et al (2019) C9orf72-specific phenomena associated with frontotemporal dementia and gastrointestinal symptoms in the absence of TDP-43 aggregation. Acta Neuropathol 138:1093–1097. https://doi.org/10.1007/s00401-019-02084-y

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schludi MH, May S, Grässer FA, Rentzsch K, Kremmer E, Küpper C, German Consortium for Frontotemporal Lobar Degeneration, Bavarian Brain Banking Alliance et al (2015) Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing. Acta Neuropathol 130:537–555. https://doi.org/10.1007/s00401-015-1450-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vatsavayai SC, Yoon SJ, Gardner RC, Gendron TF, Vargas JNS, Trujillo A et al (2016) Timing and significance of pathological features in C9orf72 expansion-associated frontotemporal dementia. Brain 139:3202–3216. https://doi.org/10.1093/brain/aww250

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

LD is funded by a PhD Fellowship of the Research Foundation–Flanders (FWO-Vlaanderen) (1165119N). EVS is funded by an SB PhD Fellowship of FWO-Vlaanderen (1S46219N). PVD holds a senior clinical investigatorship of FWO-Vlaanderen and is supported by the E. von Behring Chair for Neuromuscular and Neurodegenerative Disorders, the ALS Liga Belgium and the KU Leuven ALS funds ‘Een hart voor ALS’, ‘Laeversfonds voor ALS onderzoek’ and ‘Valéry Perrier Race against ALS Fund’. PVD and DRT received C1-internal funds from KU Leuven (C14-17-107). DRT and RV received funding from FWO-Odysseus Grant no. G0F8516N and Vlaamse Impulsfinanciering voor Netwerken voor Dementie Onderzoek (VIND, IWT 135043). RV was additionally funded by Mady Browaeys Fund for Research into Frontotemporal degeneration. MO received support from the German Federal Ministry of Education and Research (FTLDc 01GI1007A, MND-Net 01GM1103A), the German Research Foundation/DFG (SFB1279), the Thierry Latran Foundation and EU Joint Programme-Neurodegenerative Diseases networks Genfi-Prox. We thank Petra Weckx for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Rudolf Thal.

Ethics declarations

Conflict of interest

MO gave scientific advice for Roche (Switzerland), Biogen (USA) and Axon. ACL serves on the Advisory Board of Roche Pharma (Switzerland) and Biogen (USA), and on the data and safety monitoring board of Zeneus pharma (UK). ACL received consulting fees from AB-Science (FRA), Desitin (UK), Novartis (Switzerland) and Teva (ISR). RV’s institution has a clinical trial agreement (RV as PI) with AbbVie (USA), Biogen (USA), Genentech (USA), Novartis (Switzerland), and Roche (Switzerland). PVD participated in advisory board meetings for Genzyme (USA), Pfizer (USA), Biogen (USA), Cytokinetics (USA), Mitsubishi Tanabe (Japan), CSL Behring (USA) and Alexion Pharmaceuticals (USA). DRT received speaker honorary from Novartis Pharma AG (Switzerland) and Biogen (USA), travel reimbursement from GE-Healthcare (UK) and UCB (BE), and collaborated with Novartis Pharma AG (Switzerland), Probiodrug (Germany), GE-Healthcare (UK), and Janssen Pharmaceutical Companies (Belgium).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2354 kb)

Supplementary file2 (XLSX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedeene, L., Van Schoor, E., Ospitalieri, S. et al. Dipeptide repeat protein and TDP-43 pathology along the hypothalamic–pituitary axis in C9orf72 and non-C9orf72 ALS and FTLD-TDP cases. Acta Neuropathol 140, 777–781 (2020). https://doi.org/10.1007/s00401-020-02216-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-020-02216-9

Navigation