The choroid plexus is a key cerebral invasion route for T cells after stroke


Neuroinflammation contributes substantially to stroke pathophysiology. Cerebral invasion of peripheral leukocytes—particularly T cells—has been shown to be a key event promoting inflammatory tissue damage after stroke. While previous research has focused on the vascular invasion of T cells into the ischemic brain, the choroid plexus (ChP) as an alternative cerebral T-cell invasion route after stroke has not been investigated. We here report specific accumulation of T cells in the peri-infarct cortex and detection of T cells as the predominant population in the ipsilateral ChP in mice as well as in human post-stroke autopsy samples. T-cell migration from the ChP to the peri-infarct cortex was confirmed by in vivo cell tracking of photoactivated T cells. In turn, significantly less T cells invaded the ischemic brain after photothrombotic lesion of the ipsilateral ChP and in a stroke model encompassing ChP ischemia. We detected a gradient of CCR2 ligands as the potential driving force and characterized the neuroanatomical pathway for the intracerebral migration. In summary, our study demonstrates that the ChP is a key invasion route for post-stroke cerebral T-cell invasion and describes a CCR2-ligand gradient between cortex and ChP as the potential driving mechanism for this invasion route.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Becker K, Kindrick D, Relton J, Harlan J, Winn R (2001) Antibody to the alpha4 integrin decreases infarct size in transient focal cerebral ischemia in rats. Stroke 32:206–211

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, Sita G, Racchumi G, Ling L, Pamer EG et al (2016) Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat Med 22:516–523. doi:10.1038/nm.4068

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Canazza A, Minati L, Boffano C, Parati E, Binks S (2014) Experimental models of brain ischemia: a review of techniques, magnetic resonance imaging, and investigational cell-based therapies. Front Neurol 5:19. doi:10.3389/fneur.2014.00019

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Chamorro A, Meisel A, Planas AM, Urra X, van de Beek D, Veltkamp R (2012) The immunology of acute stroke. Nat Rev Neurol 8:401–410. doi:10.1038/nrneurol.2012.98

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Chu HX, Kim HA, Lee S, Broughton BR, Drummond GR, Sobey CG (2016) Evidence of CCR2-independent transmigration of Ly6C(hi) monocytes into the brain after permanent cerebral ischemia in mice. Brain Res 1637:118–127. doi:10.1016/j.brainres.2016.02.030

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Chu HX, Kim HA, Lee S, Moore JP, Chan CT, Vinh A, Gelderblom M, Arumugam TV, Broughton BR, Drummond GR et al (2014) Immune cell infiltration in malignant middle cerebral artery infarction: comparison with transient cerebral ischemia. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 34:450–459. doi:10.1038/jcbfm.2013.217

    CAS  Article  Google Scholar 

  7. 7.

    Clarkson BD, Walker A, Harris MG, Rayasam A, Sandor M, Fabry Z (2015) CCR2-dependent dendritic cell accumulation in the central nervous system during early effector experimental autoimmune encephalomyelitis is essential for effector T cell restimulation in situ and disease progression. J Immunol 194:531–541. doi:10.4049/jimmunol.1401320

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Dirnagl U (2006) Bench to bedside: the quest for quality in experimental stroke research. J Cereb Blood Flow Metab 26:1465–1478. doi:10.1038/sj.jcbfm.9600298

    Article  PubMed  Google Scholar 

  9. 9.

    Dirnagl U (2014) Modeling immunity and inflammation in stroke: can mice be trusted? Stroke J Cereb Circ 45:e177–e178. doi:10.1161/STROKEAHA.114.005640

    Article  Google Scholar 

  10. 10.

    Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. Lancet 371:1612–1623. doi:10.1016/S0140-6736(08)60694-7

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Dorr A, Sled JG, Kabani N (2007) Three-dimensional cerebral vasculature of the CBA mouse brain: a magnetic resonance imaging and micro computed tomography study. NeuroImage 35:1409–1423. doi:10.1016/j.neuroimage.2006.12.040

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Elkins J (2016) Primary results of the ACTION trial of natalizumab in acute ischemic stroke (AIS). International stroke conference

  13. 13.

    Engelhardt B, Ransohoff RM (2012) Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol 33:579–589. doi:10.1016/

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17:796–808. doi:10.1038/nm.2399

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Inose Y, Kato Y, Kitagawa K, Uchiyama S, Shibata N (2015) Activated microglia in ischemic stroke penumbra upregulate MCP-1 and CCR2 expression in response to lysophosphatidylcholine derived from adjacent neurons and astrocytes. Neuropathology 35:209–223. doi:10.1111/neup.12182

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Investigators EAST (2001) Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial. Neurology 57:1428–1434

    Article  Google Scholar 

  17. 17.

    Kuscher K, Danelon G, Paoletti S, Stefano L, Schiraldi M, Petkovic V, Locati M, Gerber BO, Uguccioni M (2009) Synergy-inducing chemokines enhance CCR2 ligand activities on monocytes. Eur J Immunol 39:1118–1128. doi:10.1002/eji.200838906

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Liesz A, Zhou W, Mracsko E, Karcher S, Bauer H, Schwarting S, Sun L, Bruder D, Stegemann S, Cerwenka A et al (2011) Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain J Neurol 134:704–720. doi:10.1093/brain/awr008

    Article  Google Scholar 

  19. 19.

    Lim JK, Obara CJ, Rivollier A, Pletnev AG, Kelsall BL, Murphy PM (2011) Chemokine receptor Ccr2 is critical for monocyte accumulation and survival in West Nile virus encephalitis. J Immunol 186:471–478. doi:10.4049/jimmunol.1003003

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Llovera G, Hofmann K, Roth S, Salas-Perdomo A, Ferrer-Ferrer M, Perego C, Zanier ER, Mamrak U, Rex A, Party H et al (2015) Results of a preclinical randomized controlled multicenter trial (pRCT): anti-CD49d treatment for acute brain ischemia. Sci Transl Med 7:299ra121. doi:10.1126/scitranslmed.aaa9853

    Article  PubMed  Google Scholar 

  21. 21.

    Llovera G, Roth S, Plesnila N, Veltkamp R, Liesz A (2014) Modeling stroke in mice: permanent coagulation of the distal middle cerebral artery. J Vis Exp JoVE:e51729. doi:10.3791/51729

    Google Scholar 

  22. 22.

    Louveau A, Harris TH, Kipnis J (2015) Revisiting the mechanisms of CNS immune privilege. Trends Immunol 36:569–577. doi:10.1016/

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Lun MP, Monuki ES, Lehtinen MK (2015) Development and functions of the choroid plexus-cerebrospinal fluid system. Nat Rev Neurosci 16:445–457. doi:10.1038/nrn3921

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Macrez R, Ali C, Toutirais O, Le Mauff B, Defer G, Dirnagl U, Vivien D (2011) Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol 10:471–480. doi:10.1016/S1474-4422(11)70066-7

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67:181–198. doi:10.1016/j.neuron.2010.07.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Neumann J, Riek-Burchardt M, Herz J, Doeppner TR, Konig R, Hutten H, Etemire E, Mann L, Klingberg A, Fischer T et al (2015) Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke. Acta Neuropathol 129:259–277. doi:10.1007/s00401-014-1355-2

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Nibbs RJ, Graham GJ (2013) Immune regulation by atypical chemokine receptors. Nat Rev Immunol 13:815–829

    Article  PubMed  Google Scholar 

  28. 28.

    Pan C, Cai R, Quacquarelli FP, Ghasemigharagoz A, Lourbopoulos A, Matryba P, Plesnila N, Dichgans M, Hellal F, Erturk A (2016) Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat Methods 13:859–867. doi:10.1038/nmeth.3964

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12:623–635. doi:10.1038/nri3265

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Ransohoff RM, Kivisakk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3:569–581. doi:10.1038/nri1130

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Relton JK, Sloan KE, Frew EM, Whalley ET, Adams SP, Lobb RR (2001) Inhibition of alpha4 integrin protects against transient focal cerebral ischemia in normotensive and hypertensive rats. Stroke 32:199–205

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Saederup N, Cardona AE, Croft K, Mizutani M, Cotleur AC, Tsou CL, Ransohoff RM, Charo IF (2010) Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS One 5:e13693. doi:10.1371/journal.pone.0013693

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Schwartz M, Baruch K (2014) The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J 33(1):7–22. doi:10.1002/embj.201386609

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Schwarzmaier SM, de Chaumont C, Balbi M, Terpolilli NA, Kleinschnitz C, Gruber A, Plesnila N (2016) The formation of microthrombi in parenchymal microvessels after traumatic brain injury is independent of coagulation factor XI. J Neurotrauma 33:1634–1644. doi:10.1089/neu.2015.4173

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Shechter R, London A, Schwartz M (2013) Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol 13:206–218. doi:10.1038/nri3391

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Shechter R, Miller O, Yovel G, Rosenzweig N, London A, Ruckh J, Kim KW, Klein E, Kalchenko V, Bendel P et al (2013) Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38:555–569. doi:10.1016/j.immuni.2013.02.012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Steffen BJ, Butcher EC, Engelhardt B (1994) Evidence for involvement of ICAM-1 and VCAM-1 in lymphocyte interaction with endothelium in experimental autoimmune encephalomyelitis in the central nervous system in the SJL/J mouse. Am J Pathol 145:189–201

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Tietz S, Engelhardt B (2015) Brain barriers: crosstalk between complex tight junctions and adherens junctions. J Cell Biol 209:493–506. doi:10.1083/jcb.201412147

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Tymianski M (2015) Neuroprotective therapies: preclinical reproducibility is only part of the problem. Sci Transl Med 7:299. doi:10.1126/scitranslmed.aac9412

    Article  Google Scholar 

  40. 40.

    Umekawa T, Osman AM, Han W, Ikeda T, Blomgren K (2015) Resident microglia, rather than blood-derived macrophages, contribute to the earlier and more pronounced inflammatory reaction in the immature compared with the adult hippocampus after hypoxia-ischemia. Glia 63:2220–2230. doi:10.1002/glia.22887

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Urra X, Miro F, Chamorro A, Planas AM (2014) Antigen-specific immune reactions to ischemic stroke. Front Cell Neurosci 8:278. doi:10.3389/fncel.2014.00278

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-Hermann M, Dustin ML, Nussenzweig MC (2010) Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143:592–605. doi:10.1016/j.cell.2010.10.032

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Waggott D, Chu K, Yin S, Wouters BG, Liu FF, Boutros PC (2012) NanoStringNorm: an extensible R package for the pre-processing of NanoString mRNA and miRNA data. Bioinformatics 28:1546–1548. doi:10.1093/bioinformatics/bts188

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184:53–68. doi:10.1016/j.jneuroim.2006.11.014

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Wilson EH, Weninger W, Hunter CA (2010) Trafficking of immune cells in the central nervous system. J Clin Investig 120:1368–1379. doi:10.1172/JCI41911

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Wolburg K, Gerhardt H, Schulz M, Wolburg H, Engelhardt B (1999) Ultrastructural localization of adhesion molecules in the healthy and inflamed choroid plexus of the mouse. Cell Tissue Res 296:259–269

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Zhou W, Liesz A, Bauer H, Sommer C, Lahrmann B, Valous N, Grabe N, Veltkamp R (2013) Postischemic brain infiltration of leukocyte subpopulations differs among murine permanent and transient focal cerebral ischemia models. Brain Pathol 23:34–44. doi:10.1111/j.1750-3639.2012.00614.x

    CAS  Article  PubMed  Google Scholar 

Download references


This work was funded by the excellence cluster of the German research foundation “Munich Cluster for Systems Neurology (SyNergy)” and the German Research foundation (DFG, LI-2534/1-1 and LI-2534/2-1) to A.L. The Swiss National Science Foundation (ProDoc Cell Migration - RM 1 and 3) to BE, the Swiss Heart Foundation to BE and GE. CCR2RFP/RFPCX3CR1GFP/+ were kindly donated by Israel F. Charo (University of California, San Francisco, USA) and Richard Ransohoff (Biogen Idec, Boston, USA). We thank the Human Brain and Spinal Fluid Resource Center, VA West Los Angeles Healthcare Center (Los Angeles, USA) for providing human brain samples. The authors would like to thank Kerstin Thuß-Silczakfor excellent technical assistance, Dr. Urban Deutsch for maintaining transgenic mouse colonies at the University of Bern, and Dr. Farida Hellal for advice on histological techniques.

Author information




G.L., C.B., X.M., G.E., R.C., T.A., I.L., S.L., and L.M. performed experiments; G.L., C.B., A.G., T.A., R.M., A.E., N.P., B.E. and A.L. analyzed data; J.M. provided critical material and analyzed data; D.V., C.H., N.P., B.E. and G.L. contributed critical input to the manuscript; A.L. initiated the study, designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Arthur Liesz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 615 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Llovera, G., Benakis, C., Enzmann, G. et al. The choroid plexus is a key cerebral invasion route for T cells after stroke. Acta Neuropathol 134, 851–868 (2017).

Download citation


  • Invasion Route
  • Peri-infarct Cortex
  • CC Chemokine Receptor 2 (CCR2)
  • CCR2 Ligands
  • Post-stroke Neuroinflammation