Acta Neuropathologica

, Volume 128, Issue 6, pp 755–766 | Cite as

Primary age-related tauopathy (PART): a common pathology associated with human aging

  • John F. CraryEmail author
  • John Q. Trojanowski
  • Julie A. Schneider
  • Jose F. Abisambra
  • Erin L. Abner
  • Irina Alafuzoff
  • Steven E. Arnold
  • Johannes Attems
  • Thomas G. Beach
  • Eileen H. Bigio
  • Nigel J. Cairns
  • Dennis W. Dickson
  • Marla Gearing
  • Lea T. Grinberg
  • Patrick R. Hof
  • Bradley T. Hyman
  • Kurt Jellinger
  • Gregory A. Jicha
  • Gabor G. Kovacs
  • David S. Knopman
  • Julia Kofler
  • Walter A. Kukull
  • Ian R. Mackenzie
  • Eliezer Masliah
  • Ann McKee
  • Thomas J. Montine
  • Melissa E. Murray
  • Janna H. Neltner
  • Ismael Santa-Maria
  • William W. Seeley
  • Alberto Serrano-Pozo
  • Michael L. Shelanski
  • Thor Stein
  • Masaki Takao
  • Dietmar R. Thal
  • Jonathan B. Toledo
  • Juan C. Troncoso
  • Jean Paul Vonsattel
  • Charles L. White3rd
  • Thomas Wisniewski
  • Randall L. Woltjer
  • Masahito Yamada
  • Peter T. NelsonEmail author
Consensus Paper


We recommend a new term, “primary age-related tauopathy” (PART), to describe a pathology that is commonly observed in the brains of aged individuals. Many autopsy studies have reported brains with neurofibrillary tangles (NFTs) that are indistinguishable from those of Alzheimer’s disease (AD), in the absence of amyloid (Aβ) plaques. For these “NFT+/Aβ−” brains, for which formal criteria for AD neuropathologic changes are not met, the NFTs are mostly restricted to structures in the medial temporal lobe, basal forebrain, brainstem, and olfactory areas (bulb and cortex). Symptoms in persons with PART usually range from normal to amnestic cognitive changes, with only a minority exhibiting profound impairment. Because cognitive impairment is often mild, existing clinicopathologic designations, such as “tangle-only dementia” and “tangle-predominant senile dementia”, are imprecise and not appropriate for most subjects. PART is almost universally detectable at autopsy among elderly individuals, yet this pathological process cannot be specifically identified pre-mortem at the present time. Improved biomarkers and tau imaging may enable diagnosis of PART in clinical settings in the future. Indeed, recent studies have identified a common biomarker profile consisting of temporal lobe atrophy and tauopathy without evidence of Aβ accumulation. For both researchers and clinicians, a revised nomenclature will raise awareness of this extremely common pathologic change while providing a conceptual foundation for future studies. Prior reports that have elucidated features of the pathologic entity we refer to as PART are discussed, and working neuropathological diagnostic criteria are proposed.


TPSD TOD Braak Neuropathology Consensus 



We are extremely grateful to the patients, clinicians, and fellow researchers that made this effort possible. We also acknowledge the following funding sources: the Society for Supporting Research in Experimental Neurology, Vienna, Austria, National Institutes of Health Grants P50AG08702, R01 AG037212, P01AG07232, P30 AG028383, P50 AG005138, P50 AG016574, U01 AG006786, R01 AG041851, R01 AG011378, P30 AG028383, P50 AG016574, P01 AG003949, P30 AG012300, P50 AG005146, P50 AG005136, P50 AG025688, P50 AG005138, P01 AG002219, P50 AG005133, P50 AG005681, P01 AG003991, R01 AG038651, P30 AG019610, P30 AG013854, P30 AG036453, P30 AG010124, AG005131, AG184440, AG008051, Medical Research Council (MRC, G0400074), National Institute for Health Research (NIHR, R:CH/ML/0712), the Dunhill Medical Trust (R173/1110), Alzheimer’s Research UK (ARUK), and the Alzheimer’s Society (AS-PG-2013-011), Louis V. Gerstner, Jr., Foundation, Alzheimer’s Association (NIRG-11-204450), FP7 EU Project Develage (No. 278486), Comprehensive brain research network, Grant-in-Aid for Scientific Research (C; 26430060), and Daiwa Health Science Foundation, BrightFocus Foundation, Alzheimer’s Association NIRGD-12-242642, Alzheimer Forschung Initiative (AFI # 13803) (DRT); German Ministry for Research and Education (BMBF) FTLD-Net, Robert H. and Clarice Smith and Abigail Van Buren Alzheimer’s Disease Research Program of the Mayo Foundation.


  1. 1.
    Ahmed Z, Bigio EH, Budka H et al (2013) Globular glial tauopathies (GGT): consensus recommendations. Acta Neuropathol 126:537–544. doi: 10.1007/s00401-013-1171-0 PubMedCentralPubMedGoogle Scholar
  2. 2.
    Alafuzoff I (2013) Alzheimer’s disease-related lesions. J Alzheimers Dis 33(Suppl 1):S173–S179. doi: 10.3233/JAD-2012-129024 PubMedGoogle Scholar
  3. 3.
    Andrade-Moraes CH, Oliveira-Pinto AV, Castro-Fonseca E et al (2013) Cell number changes in Alzheimer’s disease relate to dementia, not to plaques and tangles. Brain 136:3738–3752. doi: 10.1093/brain/awt273 PubMedGoogle Scholar
  4. 4.
    Arai T, Ikeda K, Akiyama H et al (2001) Distinct isoforms of tau aggregated in neurons and glial cells in brains of patients with Pick’s disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol 101:167–173PubMedGoogle Scholar
  5. 5.
    Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1:103–116PubMedGoogle Scholar
  6. 6.
    Arriagada PV, Marzloff K, Hyman BT (1992) Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42:1681–1688PubMedGoogle Scholar
  7. 7.
    Attems J, Jellinger KA (2006) Olfactory tau pathology in Alzheimer disease and mild cognitive impairment. Clin Neuropathol 25:265–271PubMedGoogle Scholar
  8. 8.
    Attems J, Lintner F, Jellinger KA (2005) Olfactory involvement in aging and Alzheimer’s disease: an autopsy study. J Alzheimers Dis 7:149–157 (discussion 173–180)PubMedGoogle Scholar
  9. 9.
    Attems J, Thal DR, Jellinger KA (2012) The relationship between subcortical tau pathology and Alzheimer’s disease. Biochem Soc Trans 40:711–715. doi: 10.1042/BST20120034 PubMedGoogle Scholar
  10. 10.
    Baborie A, Griffiths TD, Jaros E et al (2012) Frontotemporal dementia in elderly individuals. Arch Neurol 69:1052–1060. doi: 10.1001/archneurol.2011.3323 PubMedGoogle Scholar
  11. 11.
    Ball MJ (1978) Topographic distribution of neurofibrillary tangles and granulovacuolar degeneration in hippocampal cortex of aging and demented patients. A quantitative study. Acta Neuropathol 42:73–80PubMedGoogle Scholar
  12. 12.
    Ball MJ, Nuttall K (1981) Topography of neurofibrillary tangles and granulovacuoles in hippocampi of patients with Down’s syndrome: quantitative comparison with normal ageing and Alzheimer’s disease. Neuropathol Appl Neurobiol 7:13–20PubMedGoogle Scholar
  13. 13.
    Bancher C, Egensperger R, Kosel S, Jellinger K, Graeber MB (1997) Low prevalence of apolipoprotein E epsilon 4 allele in the neurofibrillary tangle predominant form of senile dementia. Acta Neuropathol 94:403–409PubMedGoogle Scholar
  14. 14.
    Bancher C, Jellinger KA (1994) Neurofibrillary tangle predominant form of senile dementia of Alzheimer type: a rare subtype in very old subjects. Acta Neuropathol 88:565–570PubMedGoogle Scholar
  15. 15.
    Bancher C, Paulus W, Paukner K, Jellinger K (1997) Neuropathologic diagnosis of Alzheimer disease: consensus between practicing neuropathologists? Alzheimer Dis Assoc Disord 11:207–219PubMedGoogle Scholar
  16. 16.
    Beekly DL, Ramos EM, Lee WW et al (2007) The National Alzheimer’s Coordinating Center (NACC) database: the uniform data set. Alzheimer Dis Assoc Disord 21:249–258. doi: 10.1097/WAD.0b013e318142774e PubMedGoogle Scholar
  17. 17.
    Berg L, McKeel DW Jr, Miller JP et al (1998) Clinicopathologic studies in cognitively healthy aging and Alzheimer’s disease: relation of histologic markers to dementia severity, age, sex, and apolipoprotein E genotype. Arch Neurol 55:326–335PubMedGoogle Scholar
  18. 18.
    Bondareff W, Mountjoy CQ, Roth M et al (1987) Age and histopathologic heterogeneity in Alzheimer’s disease. Evidence for subtypes. Arch Gen Psychiatry 44:412–417PubMedGoogle Scholar
  19. 19.
    Bondareff W, Mountjoy CQ, Roth M et al (1987) Neuronal degeneration in locus coeruleus and cortical correlates of Alzheimer disease. Alzheimer Dis Assoc Disord 1:256–262PubMedGoogle Scholar
  20. 20.
    Bondareff W, Mountjoy CQ, Wischik CM et al (1993) Evidence of subtypes of Alzheimer’s disease and implications for etiology. Arch Gen Psychiatry 50:350–356PubMedGoogle Scholar
  21. 21.
    Bouras C, Hof PR, Giannakopoulos P, Michel JP, Morrison JH (1994) Regional distribution of neurofibrillary tangles and senile plaques in the cerebral cortex of elderly patients: a quantitative evaluation of a one-year autopsy population from a geriatric hospital. Cereb Cortex 4:138–150PubMedGoogle Scholar
  22. 22.
    Bouras C, Hof PR, Morrison JH (1993) Neurofibrillary tangle densities in the hippocampal formation in a non-demented population define subgroups of patients with differential early pathologic changes. Neurosci Lett 153:131–135PubMedGoogle Scholar
  23. 23.
    Boutajangout A, Wisniewski T (2014) Tau-based therapeutic approaches for Alzheimer’s disease—a mini-review. Gerontology 60(5):381–385. doi: 10.1159/000358875 PubMedGoogle Scholar
  24. 24.
    Bowler JV, Hachinski V (1995) Vascular cognitive impairment: a new approach to vascular dementia. Bailliere’s Clin Neurol 4:357–376Google Scholar
  25. 25.
    Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404. doi: 10.1007/s00401-006-0127-z PubMedCentralPubMedGoogle Scholar
  26. 26.
    Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82:239–259PubMedGoogle Scholar
  27. 27.
    Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16:271–278 (discussion 278–284)PubMedGoogle Scholar
  28. 28.
    Braak H, Braak E, Bohl J (1993) Staging of Alzheimer-related cortical destruction. Eur Neurol 33:403–408PubMedGoogle Scholar
  29. 29.
    Braak H, Del Tredici K (2004) Alzheimer’s disease: intraneuronal alterations precede insoluble amyloid-beta formation. Neurobiol Aging 25:713–718. doi: 10.1016/j.neurobiolaging.2003.12.015 (discussion 743–716)PubMedGoogle Scholar
  30. 30.
    Braak H, Del Tredici K (2011) The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol 121:171–181. doi: 10.1007/s00401-010-0789-4 PubMedGoogle Scholar
  31. 31.
    Braak H, Del Tredici K (2012) Where, when, and in what form does sporadic Alzheimer’s disease begin? Curr Opin Neurol 25:708–714. doi: 10.1097/WCO.0b013e32835a3432 PubMedGoogle Scholar
  32. 32.
    Braak H, Thal DR, Ghebremedhin E, Del Tredici K (2011) Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 70:960–969. doi: 10.1097/NEN.0b013e318232a379 PubMedGoogle Scholar
  33. 33.
    Cairns NJ, Bigio EH, Mackenzie IR et al (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol (Berl) 114:5–22Google Scholar
  34. 34.
    Clavaguera F, Akatsu H, Fraser G et al (2013) Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci USA 110:9535–9540. doi: 10.1073/pnas.1301175110 PubMedCentralPubMedGoogle Scholar
  35. 35.
    Clavaguera F, Bolmont T, Crowther RA et al (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913. doi: 10.1038/ncb1901 PubMedCentralPubMedGoogle Scholar
  36. 36.
    Davis DG, Schmitt FA, Wekstein DR, Markesbery WR (1999) Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol 58:376–388PubMedGoogle Scholar
  37. 37.
    Dawe RJ, Bennett DA, Schneider JA, Arfanakis K (2011) Neuropathologic correlates of hippocampal atrophy in the elderly: a clinical, pathologic, postmortem MRI study. PLoS One 6:e26286. doi: 10.1371/journal.pone.0026286 PubMedCentralPubMedGoogle Scholar
  38. 38.
    de Calignon A, Polydoro M, Suarez-Calvet M et al (2012) Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron 73:685–697. doi: 10.1016/j.neuron.2011.11.033 PubMedCentralPubMedGoogle Scholar
  39. 39.
    Dickson DW, Kouri N, Murray ME, Josephs KA (2011) Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau). J Mol Neurosci 45(3):384–389. doi: 10.1007/s12031-011-9589-0 PubMedCentralPubMedGoogle Scholar
  40. 40.
    Dugger BN, Hidalgo JA, Chiarolanza G et al (2013) The distribution of phosphorylated tau in spinal cords of Alzheimer’s disease and non-demented individuals. J Alzheimers Dis 34:529–536. doi: 10.3233/JAD-121864 PubMedCentralPubMedGoogle Scholar
  41. 41.
    Dugger BN, Tu M, Murray ME, Dickson DW (2011) Disease specificity and pathologic progression of tau pathology in brainstem nuclei of Alzheimer’s disease and progressive supranuclear palsy. Neurosci Lett 491(2):122–126. doi: 10.1016/j.neulet.2011.01.020 PubMedCentralPubMedGoogle Scholar
  42. 42.
    Elobeid A, Soininen H, Alafuzoff I (2012) Hyperphosphorylated tau in young and middle-aged subjects. Acta Neuropathol 123:97–104. doi: 10.1007/s00401-011-0906-z PubMedCentralPubMedGoogle Scholar
  43. 43.
    Feany MB, Dickson DW (1996) Neurodegenerative disorders with extensive tau pathology: a comparative study and review. Ann Neurol 40:139–148. doi: 10.1002/ana.410400204 PubMedGoogle Scholar
  44. 44.
    Ferrer I, Lopez-Gonzalez I, Carmona M et al (2014) Glial and neuronal tau pathology in tauopathies: characterization of disease-specific phenotypes and tau pathology progression. J Neuropathol Exp Neurol 73:81–97. doi: 10.1097/NEN.0000000000000030 PubMedGoogle Scholar
  45. 45.
    Ferrer I, Santpere G, van Leeuwen FW (2008) Argyrophilic grain disease. Brain 131:1416–1432. doi: 10.1093/brain/awm305 PubMedGoogle Scholar
  46. 46.
    Frost B, Diamond MI (2010) Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci 11:155–159. doi: 10.1038/nrn2786 PubMedCentralPubMedGoogle Scholar
  47. 47.
    Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284:12845–12852. doi: 10.1074/jbc.M808759200 PubMedCentralPubMedGoogle Scholar
  48. 48.
    Fukutani Y, Kobayashi K, Nakamura I et al (1995) Neurons, intracellular and extracellular neurofibrillary tangles in subdivisions of the hippocampal cortex in normal ageing and Alzheimer’s disease. Neurosci Lett 200:57–60 (0304-3940(95)12083-G [pii])PubMedGoogle Scholar
  49. 49.
    Garcia-Sierra F, Hauw JJ, Duyckaerts C et al (2000) The extent of neurofibrillary pathology in perforant pathway neurons is the key determinant of dementia in the very old. Acta Neuropathol 100:29–35PubMedGoogle Scholar
  50. 50.
    Geser F, Winton MJ, Kwong LK et al (2008) Pathological TDP-43 in parkinsonism–dementia complex and amyotrophic lateral sclerosis of Guam. Acta Neuropathol 115:133–145. doi: 10.1007/s00401-007-0257-y PubMedGoogle Scholar
  51. 51.
    Giannakopoulos P, Hof PR, Mottier S, Michel JP, Bouras C (1994) Neuropathological changes in the cerebral cortex of 1258 cases from a geriatric hospital: retrospective clinicopathological evaluation of a 10-year autopsy population. Acta Neuropathol 87:456–468PubMedGoogle Scholar
  52. 52.
    Goodman L (1953) Alzheimer’s disease: a clinico-pathologic analysis of twenty-three cases with a theory on pathogenesis. J Nerv Ment Dis 117:97–130Google Scholar
  53. 53.
    Grinberg LT, Rub U, Ferretti RE et al (2009) The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer’s disease. A precocious onset? Neuropathol Appl Neurobiol 35:406–416. doi: 10.1111/j.1365-2990.2009.00997.x PubMedGoogle Scholar
  54. 54.
    Grinberg LT, Wang X, Wang C et al (2013) Argyrophilic grain disease differs from other tauopathies by lacking tau acetylation. Acta Neuropathol 125:581–593. doi: 10.1007/s00401-013-1080-2 PubMedCentralPubMedGoogle Scholar
  55. 55.
    Grudzien A, Shaw P, Weintraub S et al (2007) Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer’s disease. Neurobiol Aging 28:327–335. doi: 10.1016/j.neurobiolaging.2006.02.007 PubMedGoogle Scholar
  56. 56.
    Guillozet AL, Weintraub S, Mash DC, Mesulam MM (2003) Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol 60:729–736PubMedGoogle Scholar
  57. 57.
    Guo JL, Lee VM (2011) Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem 286(17):15317–15331. doi: 10.1074/jbc.M110.209296 PubMedCentralPubMedGoogle Scholar
  58. 58.
    Hauw JJ, Vignolo P, Duyckaerts C et al (1986) Neuropathological study of 12 centenarians: the incidence of Alzheimer type senile dementia is not particularly increased in this group of very old patients. Rev Neurol 142:107–115PubMedGoogle Scholar
  59. 59.
    Hof PR, Archin N, Osmand AP et al (1993) Posterior cortical atrophy in Alzheimer’s disease: analysis of a new case and re-evaluation of a historical report. Acta Neuropathol 86:215–223PubMedGoogle Scholar
  60. 60.
    Hof PR, Bouras C, Buée L et al (1992) Differential distribution of neurofibrillary tangles in the cerebral cortex of dementia pugilistica and Alzheimer’s disease cases. Acta Neuropathol 85:23–30PubMedGoogle Scholar
  61. 61.
    Hof PR, Perl DP, Loerzel AJ, Morrison JH (1991) Neurofibrillary tangle distribution in the cerebral cortex of parkinsonism-dementia cases from Guam: differences with Alzheimer’s disease. Brain Res 564:306–313 (0006-8993(91)91467-F [pii])PubMedGoogle Scholar
  62. 62.
    Hof PR, Vogt BA, Bouras C, Morrison JH (1997) Atypical form of Alzheimer’s disease with prominent posterior cortical atrophy: a review of lesion distribution and circuit disconnection in cortical visual pathways. Vision Res 37:3609–3625. doi: 10.1016/S0042-6989(96)00240-4 PubMedGoogle Scholar
  63. 63.
    Hutton M, Lendon CL, Rizzu P et al (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705. doi: 10.1038/31508 PubMedGoogle Scholar
  64. 64.
    Hyman BT, Phelps CH, Beach TG et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13. doi: 10.1016/j.jalz.2011.10.007 PubMedCentralPubMedGoogle Scholar
  65. 65.
    Ikeda K, Akiyama H, Arai T, Nishimura T (1998) Glial tau pathology in neurodegenerative diseases: their nature and comparison with neuronal tangles. Neurobiol Aging 19:S85–S91PubMedGoogle Scholar
  66. 66.
    Ikeda K, Akiyama H, Arai T et al (1999) Clinical aspects of ‘senile dementia of the tangle type’—a subset of dementia in the senium separable from late-onset Alzheimer’s disease. Dement Geriatr Cogn Disord 10:6–11PubMedGoogle Scholar
  67. 67.
    Ikeda K, Akiyama H, Arai T et al (1997) A subset of senile dementia with high incidence of the apolipoprotein E epsilon2 allele. Ann Neurol 41:693–695. doi: 10.1002/ana.410410522 PubMedGoogle Scholar
  68. 68.
    Ikeda K, Akiyama H, Kondo H et al (1995) Thorn-shaped astrocytes: possibly secondarily induced tau-positive glial fibrillary tangles. Acta Neuropathol 90:620–625PubMedGoogle Scholar
  69. 69.
    Ikeda K, Kondo H, Fujishima T, Kase K, Mizutani Y (1993) A case of atypical senile dementia of Alzheimer type. No To Shinkei 45:455–460PubMedGoogle Scholar
  70. 70.
    Iseki E, Tsunoda S, Suzuki K et al (2002) Regional quantitative analysis of NFT in brains of non-demented elderly persons: comparisons with findings in brains of late-onset Alzheimer’s disease and limbic NFT dementia. Neuropathology 22:34–39PubMedGoogle Scholar
  71. 71.
    Ishizawa T, Ko LW, Cookson N et al (2002) Selective neurofibrillary degeneration of the hippocampal CA2 sector is associated with four-repeat tauopathies. J Neuropathol Exp Neurol 61:1040–1047PubMedGoogle Scholar
  72. 72.
    Itoh Yamada M, Yoshida R et al (1996) Dementia characterized by abundant neurofibrillary tangles and scarce senile plaques: a quantitative pathological study. Eur Neurol 36:94–97PubMedGoogle Scholar
  73. 73.
    Itoh Y, Yamada M, Suematsu N, Matsushita M, Otomo E (1998) An immunohistochemical study of centenarian brains: a comparison. J Neurol Sci 157:73–81PubMedGoogle Scholar
  74. 74.
    Jack CR Jr, Albert MS, Knopman DS et al (2011) Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:257–262. doi: 10.1016/j.jalz.2011.03.004 PubMedCentralPubMedGoogle Scholar
  75. 75.
    Jack CR Jr, Knopman DS, Weigand SD et al (2012) An operational approach to National Institute on Aging-Alzheimer’s Association criteria for preclinical Alzheimer disease. Ann Neurol 71:765–775. doi: 10.1002/ana.22628 PubMedCentralPubMedGoogle Scholar
  76. 76.
    Janocko NJ, Brodersen KA, Soto-Ortolaza AI et al (2012) Neuropathologically defined subtypes of Alzheimer’s disease differ significantly from neurofibrillary tangle-predominant dementia. Acta Neuropathol 124:681–692. doi: 10.1007/s00401-012-1044-y PubMedCentralPubMedGoogle Scholar
  77. 77.
    Jellinger KA (2013) Challenges in the neuropathological diagnosis of dementias. Int J Neuropathol 1:44Google Scholar
  78. 78.
    Jellinger KA (2012) Neuropathological subtypes of Alzheimer’s disease. Acta Neuropathol 123:153–154. doi: 10.1007/s00401-011-0889-9 PubMedGoogle Scholar
  79. 79.
    Jellinger KA, Attems J (2007) Neurofibrillary tangle-predominant dementia: comparison with classical Alzheimer disease. Acta Neuropathol 113:107–117. doi: 10.1007/s00401-006-0156-7 PubMedGoogle Scholar
  80. 80.
    Jellinger KA, Attems J (2010) Prevalence and pathology of vascular dementia in the oldest-old. J Alzheimers Dis 21:1283–1293PubMedGoogle Scholar
  81. 81.
    Jellinger KA, Bancher C (1998) Senile dementia with tangles (tangle predominant form of senile dementia). Brain Pathol 8:367–376PubMedGoogle Scholar
  82. 82.
    Jicha GA, Abner EL, Schmitt FA, et al. (2012) Preclinical AD Workgroup staging: pathological correlates and potential challenges. Neurobiol Aging. 33:622 e621–622 e616. doi: 10.1016/j.neurobiolaging.2011.02.018
  83. 83.
    Jicha GA, Parisi JE, Dickson DW et al (2006) Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia. Arch Neurol 63:674–681PubMedGoogle Scholar
  84. 84.
    Josephs KA, Whitwell JL, Parisi JE et al (2008) Argyrophilic grains: a distinct disease or an additive pathology? Neurobiol Aging 29:566–573. doi: 10.1016/j.neurobiolaging.2006.10.032 PubMedCentralPubMedGoogle Scholar
  85. 85.
    Kidd M (1963) Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature 197:192–193PubMedGoogle Scholar
  86. 86.
    Knopman DS, Caselli RJ (2012) Appraisal of cognition in preclinical Alzheimer’s disease: a conceptual review. Neurodegener Dis Manag 2:183–195. doi: 10.2217/NMT.12.5 PubMedCentralPubMedGoogle Scholar
  87. 87.
    Knopman DS, Jack CR Jr, Wiste HJ et al (2013) Brain injury biomarkers are not dependent on beta-amyloid in normal elderly. Ann Neurol 73:472–480. doi: 10.1002/ana.23816 PubMedCentralPubMedGoogle Scholar
  88. 88.
    Knopman DS, Parisi JE, Salviati A et al (2003) Neuropathology of cognitively normal elderly. J Neuropathol Exp Neurol 62:1087–1095PubMedGoogle Scholar
  89. 89.
    Kovacs GG, Milenkovic I, Wohrer A et al (2013) Non-Alzheimer neurodegenerative pathologies and their combinations are more frequent than commonly believed in the elderly brain: a community-based autopsy series. Acta Neuropathol 126:365–384. doi: 10.1007/s00401-013-1157-y PubMedGoogle Scholar
  90. 90.
    Kovacs GG, Molnar K, Laszlo L et al (2011) A peculiar constellation of tau pathology defines a subset of dementia in the elderly. Acta Neuropathol 122:205–222. doi: 10.1007/s00401-011-0819-x PubMedGoogle Scholar
  91. 91.
    Liu L, Drouet V, Wu JW et al (2012) Trans-synaptic spread of tau pathology in vivo. PLoS One 7:e31302. doi: 10.1371/journal.pone.0031302 PubMedCentralPubMedGoogle Scholar
  92. 92.
    Malkani RG, Dickson DW, Simuni T (2012) Hippocampal-sparing Alzheimer’s disease presenting as corticobasal syndrome. Parkinsonism Relat Disord 18:683–685. doi: 10.1016/j.parkreldis.2011.11.022 PubMedGoogle Scholar
  93. 93.
    Markesbery WR, Schmitt FA, Kryscio RJ et al (2006) Neuropathologic substrate of mild cognitive impairment. Arch Neurol 63:38–46PubMedGoogle Scholar
  94. 94.
    Matsui Y, Tanizaki Y, Arima H et al (2009) Incidence and survival of dementia in a general population of Japanese elderly: the Hisayama study. J Neurol Neurosurg Psychiatry 80:366–370. doi: 10.1136/jnnp.2008.155481 PubMedGoogle Scholar
  95. 95.
    McKee AC, Cantu RC, Nowinski CJ et al (2009) Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol 68:709–735. doi: 10.1097/NEN.0b013e3181a9d503 PubMedCentralPubMedGoogle Scholar
  96. 96.
    Mirra SS (1997) The CERAD neuropathology protocol and consensus recommendations for the postmortem diagnosis of Alzheimer’s disease: a commentary. Neurobiol Aging 18:S91–S94PubMedGoogle Scholar
  97. 97.
    Mirra SS, Heyman A, McKeel D et al (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486PubMedGoogle Scholar
  98. 98.
    Mitchell TW, Mufson EJ, Schneider JA et al (2002) Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer’s disease. Ann Neurol 51:182–189PubMedGoogle Scholar
  99. 99.
    Mizutani T, Kasahara M, Yamada S, Mukai M, Amano N (1993) Study on the neuropathological diagnosis of senile dementia of the Alzheimer type. No To Shinkei 45:333–342PubMedGoogle Scholar
  100. 100.
    Mizutani T, Shimada H (1992) Neuropathological background of twenty-seven centenarian brains. J Neurol Sci 108:168–177PubMedGoogle Scholar
  101. 101.
    Mizutani T, Shimada H (1991) Quantitative study of neurofibrillary tangles in subdivisions of the hippocampus. CA2 as a special area in normal aging and senile dementia of the Alzheimer type. Acta Pathol Jpn 41:597–603PubMedGoogle Scholar
  102. 102.
    Montine TJ, Phelps CH, Beach TG et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11. doi: 10.1007/s00401-011-0910-3 PubMedCentralPubMedGoogle Scholar
  103. 103.
    Mungas D, Tractenberg R, Schneider JA, Crane PK, Bennett DA (2014) A 2-process model for neuropathology of Alzheimer’s disease. Neurobiol Aging 35:301–308. doi: 10.1016/j.neurobiolaging.2013.08.007 PubMedGoogle Scholar
  104. 104.
    Murray ME, Cannon A, Graff-Radford NR et al (2014) Differential clinicopathologic and genetic features of late-onset amnestic dementias. Acta Neuropathol. doi: 10.1007/s00401-014-1302-2 Google Scholar
  105. 105.
    Murray ME, Graff-Radford NR, Ross OA et al (2011) Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol 10:785–796. doi: 10.1016/S1474-4422(11)70156-9 PubMedCentralPubMedGoogle Scholar
  106. 106.
    Nakaya H, Miki T, Seino S et al (2003) Molecular and functional diversity of ATP-sensitive K+ channels: the pathophysiological roles and potential drug targets. Nihon Yakurigaku Zasshi 122:243–250PubMedGoogle Scholar
  107. 107.
    Nelson PT, Abner EL, Schmitt FA et al (2009) Brains with medial temporal lobe neurofibrillary tangles but no neuritic amyloid plaques are a diagnostic dilemma but may have pathogenetic aspects distinct from Alzheimer disease. J Neuropathol Exp Neurol 68:774–784. doi: 10.1097/NEN.0b013e3181aacbe9 PubMedCentralPubMedGoogle Scholar
  108. 108.
    Nelson PT, Alafuzoff I, Bigio EH et al (2012) Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 71:362–381. doi: 10.1097/NEN.0b013e31825018f7 PubMedCentralPubMedGoogle Scholar
  109. 109.
    Nelson PT, Jicha GA, Schmitt FA et al (2007) Clinicopathologic correlations in a large Alzheimer disease center autopsy cohort: neuritic plaques and neurofibrillary tangles “do count” when staging disease severity. J Neuropathol Exp Neurol 66:1136–1146PubMedCentralPubMedGoogle Scholar
  110. 110.
    Noda K, Sasaki K, Fujimi K et al (2006) Quantitative analysis of neurofibrillary pathology in a general population to reappraise neuropathological criteria for senile dementia of the neurofibrillary tangle type (tangle-only dementia): the Hisayama Study. Neuropathology 26:508–518PubMedGoogle Scholar
  111. 111.
    Perl DP, Hof PR, Purohit DP, Loerzel AJ, Kakulas BA (2003) Hippocampal and entorhinal cortex neurofibrillary tangle formation in Guamanian Chamorros free of overt neurologic dysfunction. J Neuropathol Exp Neurol 62:381–388PubMedGoogle Scholar
  112. 112.
    Petersen RC, Aisen P, Boeve BF et al (2013) Criteria for mild cognitive impairment due to alzheimer’s disease in the community. Ann Neurol. doi: 10.1002/ana.23931 Google Scholar
  113. 113.
    Petersen RC, Parisi JE, Dickson DW et al (2006) Neuropathologic features of amnestic mild cognitive impairment. Arch Neurol 63:665–672. doi: 10.1001/archneur.63.5.665 PubMedGoogle Scholar
  114. 114.
    Prestia A, Caroli A, van der Flier WM et al (2013) Prediction of dementia in MCI patients based on core diagnostic markers for Alzheimer disease. Neurology 80:1048–1056. doi: 10.1212/WNL.0b013e3182872830 PubMedGoogle Scholar
  115. 115.
    Ranginwala NA, Hynan LS, Weiner MF, White CL 3rd (2008) Clinical criteria for the diagnosis of Alzheimer disease: still good after all these years. Am J Geriatr Psychiatry 16:384–388. doi: 10.1097/JGP.0b013e3181629971 PubMedGoogle Scholar
  116. 116.
    Rijal Upadhaya A, Kosterin I, Kumar S et al (2014) Biochemical stages of amyloid-beta peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically preclinical Alzheimer’s disease. Brain 137:887–903. doi: 10.1093/brain/awt362 PubMedGoogle Scholar
  117. 117.
    Robinson JL, Geser F, Corrada MM et al (2011) Neocortical and hippocampal amyloid-beta and tau measures associate with dementia in the oldest-old. Brain 134:3708–3715. doi: 10.1093/brain/awr308 PubMedGoogle Scholar
  118. 118.
    Rohrer JD, Schott JM (2011) Primary progressive aphasia—defining genetic and pathological subtypes. Curr Alzheimer Res 8:266–272 (BSP/CAR/0119 [pii])PubMedGoogle Scholar
  119. 119.
    Ruben GC, Wang JZ, Iqbal K, Grundke-Iqbal I (2005) Paired helical filaments (PHFs) are a family of single filament structures with a common helical turn period: negatively stained PHF imaged by TEM and measured before and after sonication, deglycosylation, and dephosphorylation. Microsc Res Tech 67:175–195. doi: 10.1002/jemt.20197 PubMedGoogle Scholar
  120. 120.
    Sabbagh MN, Sandhu SS, Farlow MR et al (2009) Correlation of clinical features with argyrophilic grains at autopsy. Alzheimer Dis Assoc Disord 23:229–233. doi: 10.1097/WAD.0b013e318199d833 PubMedCentralPubMedGoogle Scholar
  121. 121.
    Saito Y, Ruberu NN, Sawabe M et al (2004) Staging of argyrophilic grains: an age-associated tauopathy. J Neuropathol Exp Neurol 63:911–918PubMedGoogle Scholar
  122. 122.
    Santa-Maria I, Haggiagi A, Liu X et al (2012) The MAPT H1 haplotype is associated with tangle-predominant dementia. Acta Neuropathol 124:693–704. doi: 10.1007/s00401-012-1017-1 PubMedCentralPubMedGoogle Scholar
  123. 123.
    Schmidt ML, Garruto R, Chen J, Lee VM, Trojanowski JQ (2000) Tau epitopes in spinal cord neurofibrillary lesions in Chamorros of Guam. Neuroreport 11:3427–3430PubMedGoogle Scholar
  124. 124.
    Schmidt ML, Zhukareva V, Perl DP et al (2001) Spinal cord neurofibrillary pathology in Alzheimer disease and Guam Parkinsonism-dementia complex. J Neuropathol Exp Neurol 60:1075–1086PubMedGoogle Scholar
  125. 125.
    Schneider JA, Aggarwal NT, Barnes L, Boyle P, Bennett DA (2009) The neuropathology of older persons with and without dementia from community versus clinic cohorts. J Alzheimers Dis 18:691–701. doi: 10.3233/JAD-2009-1227 PubMedCentralPubMedGoogle Scholar
  126. 126.
    Schnitzler JG (1911) Zur Abgrenzung der sogenannten Alzheimerschen Erkrankung. Z ges Neurol Psychiat. 7:34–57Google Scholar
  127. 127.
    Schultz C, Ghebremedhin E, Del Tredici K, Rüb U, Braak H (2004) High prevalence of thorn-shaped astrocytes in the aged human medial temporal lobe. Neurobiol Aging 25:397–405. doi: 10.1016/S0197-4580(03)00113-1 PubMedGoogle Scholar
  128. 128.
    Serrano-Pozo A, Qian J, Monsell SE et al (2014) Mild to moderate Alzheimer dementia with insufficient neuropathological changes. Ann Neurol 75:597–601. doi: 10.1002/ana.24125 PubMedCentralPubMedGoogle Scholar
  129. 129.
    Serrano-Pozo A, Qian J, Monsell SE et al (2013) Examination of the clinicopathologic continuum of Alzheimer disease in the autopsy cohort of the National Alzheimer Coordinating Center. J Neuropathol Exp Neurol 72:1182–1192. doi: 10.1097/NEN.0000000000000016 PubMedGoogle Scholar
  130. 130.
    Shiarli AM, Jennings R, Shi J et al (2006) Comparison of extent of tau pathology in patients with frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), frontotemporal lobar degeneration with Pick bodies and early onset Alzheimer’s disease. Neuropathol Appl Neurobiol 32:374–387. doi: 10.1111/j.1365-2990.2006.00736.x PubMedGoogle Scholar
  131. 131.
    Simic G, Stanic G, Mladinov M et al (2009) Does Alzheimer’s disease begin in the brainstem? Neuropathol Appl Neurobiol 35:532–554. doi: 10.1111/j.1365-2990.2009.01038.x PubMedCentralPubMedGoogle Scholar
  132. 132.
    Sonnen JA, Santa Cruz K, Hemmy LS et al (2011) Ecology of the aging human brain. Arch Neurol 68:1049–1056. doi: 10.1001/archneurol.2011.157 PubMedCentralPubMedGoogle Scholar
  133. 133.
    Syed A, Chatfield M, Matthews F et al (2005) Depression in the elderly: pathological study of raphe and locus ceruleus. Neuropathol Appl Neurobiol 31:405–413. doi: 10.1111/j.1365-2990.2005.00662.x PubMedGoogle Scholar
  134. 134.
    Takahashi J, Shibata T, Sasaki M, et al (2014) Detection of changes in the locus coeruleus in patients with mild cognitive impairment and Alzheimer’s disease: high-resolution fast spin-echo T1-weighted imaging. Geriatr Gerontol Int. doi: 10.1111/ggi.12280
  135. 135.
    Thal DR, Capetillo-Zarate E, Del Tredici K, Braak H (2006) The development of amyloid beta protein deposits in the aged brain. Sci Aging Knowl Environ 2006:re1. doi: 10.1126/sageke.2006.6.re1 Google Scholar
  136. 136.
    Thal DR, Schultz C, Botez G et al (2005) The impact of argyrophilic grain disease on the development of dementia and its relationship to concurrent Alzheimer’s disease-related pathology. Neuropathol Appl Neurobiol 31:270–279. doi: 10.1111/j.1365-2990.2005.00635.x PubMedGoogle Scholar
  137. 137.
    Thal DR, von Arnim C, Griffin WS et al (2013) Pathology of clinical and preclinical Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 263(Suppl 2):S137–S145. doi: 10.1007/s00406-013-0449-5 PubMedGoogle Scholar
  138. 138.
    Togo T, Sahara N, Yen SH et al (2002) Argyrophilic grain disease is a sporadic 4-repeat tauopathy. J Neuropathol Exp Neurol 61:547–556PubMedGoogle Scholar
  139. 139.
    Trachtenberg DI, Trojanowski JQ (2008) Dementia: a word to be forgotten. Arch Neurol 65:593–595. doi: 10.1001/archneur.65.5.593 PubMedGoogle Scholar
  140. 140.
    Trojanowski JQ, Ishihara T, Higuchi M et al (2002) Amyotrophic lateral sclerosis/parkinsonism dementia complex: transgenic mice provide insights into mechanisms underlying a common tauopathy in an ethnic minority on Guam. Exp Neurol 176:1–11PubMedGoogle Scholar
  141. 141.
    Tsuboi Y, Wszolek ZK, Graff-Radford NR, Cookson N, Dickson DW (2003) Tau pathology in the olfactory bulb correlates with Braak stage, Lewy body pathology and apolipoprotein epsilon4. Neuropathol Appl Neurobiol 29:503–510PubMedGoogle Scholar
  142. 142.
    Ulrich J, Spillantini MG, Goedert M, Dukas L, Staehelin HB (1992) Abundant neurofibrillary tangles without senile plaques in a subset of patients with senile dementia. Neurodegeneration 1:257–284Google Scholar
  143. 143.
    Vos SJ, Xiong C, Visser PJ et al (2013) Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study. Lancet Neurol 12:957–965. doi: 10.1016/S1474-4422(13)70194-7 PubMedCentralPubMedGoogle Scholar
  144. 144.
    West MJ, Coleman PD, Flood DG, Troncoso JC (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344:769–772PubMedGoogle Scholar
  145. 145.
    Wirth M, Villeneuve S, Haase CM et al (2013) Associations between Alzheimer disease biomarkers, neurodegeneration, and cognition in cognitively normal older people. JAMA Neurol 70:1512–1519. doi: 10.1001/jamaneurol.2013.4013 PubMedGoogle Scholar
  146. 146.
    Wisniewski HM, Narang HK, Terry RD (1976) Neurofibrillary tangles of paired helical filaments. J Neurol Sci 27:173–181PubMedGoogle Scholar
  147. 147.
    Yamada M (2003) Senile dementia of the neurofibrillary tangle type (tangle-only dementia): neuropathological criteria and clinical guidelines for diagnosis. Neuropathology 23:311–317PubMedGoogle Scholar
  148. 148.
    Yamada M, Itoh Y, Sodeyama N et al (1998) Aging of the human limbic system: observations of centenarian brains and analyses of genetic risk factors for senile changes. Neuropathology 18:228–234Google Scholar
  149. 149.
    Yamada M, Itoh Y, Sodeyama N et al (2001) Senile dementia of the neurofibrillary tangle type: a comparison with Alzheimer’s disease. Dement Geriatr Cogn Disord 12:117–126. doi: 10.1159/000051245 PubMedGoogle Scholar
  150. 150.
    Yamada M, Itoh Y, Suematsu N, Otomo E, Matsushita M (1996) Apolipoprotein E genotype in elderly nondemented subjects without senile changes in the brain. Ann Neurol 40:243–245. doi: 10.1002/ana.410400217 PubMedGoogle Scholar
  151. 151.
    Yamada M, Itoh Y, Yohinori I et al (1996) Dementia of the Alzheimer type and related dementias in the aged: DAT subgroups and senile dementia of the neurofibrillary tangle type. Neuropathology 16:89–98Google Scholar
  152. 152.
    Yoshida M (2006) Cellular tau pathology and immunohistochemical study of tau isoforms in sporadic tauopathies. Neuropathology 26:457–470PubMedGoogle Scholar
  153. 153.
    Yu L, Boyle PA, Leurgans S, Schneider JA, Bennett DA (2014) Disentangling the effects of age and APOE on neuropathology and late life cognitive decline. Neurobiol Aging 35:819–826. doi: 10.1016/j.neurobiolaging.2013.10.074 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • John F. Crary
    • 1
    Email author
  • John Q. Trojanowski
    • 2
  • Julie A. Schneider
    • 3
  • Jose F. Abisambra
    • 4
  • Erin L. Abner
    • 5
  • Irina Alafuzoff
    • 6
  • Steven E. Arnold
    • 7
  • Johannes Attems
    • 8
  • Thomas G. Beach
    • 9
  • Eileen H. Bigio
    • 10
  • Nigel J. Cairns
    • 11
  • Dennis W. Dickson
    • 12
  • Marla Gearing
    • 13
  • Lea T. Grinberg
    • 14
    • 15
  • Patrick R. Hof
    • 16
  • Bradley T. Hyman
    • 17
  • Kurt Jellinger
    • 18
  • Gregory A. Jicha
    • 19
  • Gabor G. Kovacs
    • 20
  • David S. Knopman
    • 21
  • Julia Kofler
    • 22
  • Walter A. Kukull
    • 23
  • Ian R. Mackenzie
    • 24
  • Eliezer Masliah
    • 25
  • Ann McKee
    • 26
  • Thomas J. Montine
    • 27
  • Melissa E. Murray
    • 12
  • Janna H. Neltner
    • 28
  • Ismael Santa-Maria
    • 1
  • William W. Seeley
    • 29
  • Alberto Serrano-Pozo
    • 30
  • Michael L. Shelanski
    • 1
  • Thor Stein
    • 31
  • Masaki Takao
    • 32
  • Dietmar R. Thal
    • 33
  • Jonathan B. Toledo
    • 2
  • Juan C. Troncoso
    • 34
  • Jean Paul Vonsattel
    • 1
  • Charles L. White3rd
    • 35
  • Thomas Wisniewski
    • 36
  • Randall L. Woltjer
    • 37
  • Masahito Yamada
    • 38
  • Peter T. Nelson
    • 39
    Email author
  1. 1.Department of Pathology and Cell Biology and the Taub Institute for Research on Alzheimer’s Disease and the Aging BrainColumbia University Medical CenterNew YorkUSA
  2. 2.Department of Pathology, Division of NeuropathologyUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Departments of Pathology (Neuropathology) and Neurological SciencesRush University Medical CenterChicagoUSA
  4. 4.Department of Physiology and Sanders-Brown Center on AgingUniversity of KentuckyLexingtonUSA
  5. 5.Department of Public Health and Sanders-Brown Center on AgingUniversity of KentuckyLexingtonUSA
  6. 6.Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
  7. 7.Departments of Psychiatry and NeurologyUniversity of PennsylvaniaPhiladelphiaUSA
  8. 8.Institute for Ageing and Health, Newcastle UniversityNewcastle upon TyneUK
  9. 9.Civin Laboratory for NeuropathologyBanner Sun Health Research InstituteSun CityUSA
  10. 10.Department of Pathology (Neuropathology), Northwestern Cognitive Neurology and Alzheimer Disease CenterNorthwestern University Feinberg School of MedicineChicagoUSA
  11. 11.Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUSA
  12. 12.Department of NeuroscienceMayo ClinicJacksonvilleUSA
  13. 13.Department of Pathology and Laboratory Medicine (Neuropathology)Emory University School of MedicineAtlantaUSA
  14. 14.Departments of Neurology and PathologyUCSan FranciscoUSA
  15. 15.Department of PathologyUniversity of Sao PauloSao PauloBrazil
  16. 16.Fishberg Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA
  17. 17.Department of NeurologyHarvard Medical School and Massachusetts General HospitalCharlestownUSA
  18. 18.Institute of Clinical NeurobiologyViennaAustria
  19. 19.Department of Neurology and the Sanders-Brown Center on AgingUniversity of KentuckyLexingtonUSA
  20. 20.Institute of Neurology, Medical University ViennaViennaAustria
  21. 21.Department of NeurologyMayo ClinicRochesterUSA
  22. 22.Department of Pathology (Neuropathology)University of Pittsburgh Medical CenterPittsburghUSA
  23. 23.Department of EpidemiologyUniversity of WashingtonSeattleUSA
  24. 24.Department of PathologyUniversity of British ColumbiaVancouverCanada
  25. 25.Departments of Neurosciences and PathologyUniversity of CaliforniaSan Diego, La JollaUSA
  26. 26.Department of Pathology (Neuropathology)Boston UniversityBostonUSA
  27. 27.Department of PathologyUniversity of WashingtonSeattleUSA
  28. 28.Department of PathologyUniversity of KentuckyLexingtonUSA
  29. 29.Departments of Neurology and PathologyUniversity of CaliforniaSan FranciscoUSA
  30. 30.Department of NeurologyUniversity of Iowa Hospitals and ClinicsIowa cityUSA
  31. 31.Department of Pathology (Neuropathology)VA Medical Center and Boston University School of MedicineBostonUSA
  32. 32.Department of NeuropathologyTokyo Metropolitan Geriatric HospitalTokyoJapan
  33. 33.Laboratory of NeuropathologyUniversity of UlmUlmGermany
  34. 34.Department of Pathology and Laboratory MedicineInstitute on Aging, Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of MedicinePhiladelphiaUSA
  35. 35.Department of Pathology (Neuropathology)University of Texas Southwestern Medical SchoolDallasUSA
  36. 36.Departments of Neurology, Pathology and PsychiatryNew York University School of MedicineNew YorkUSA
  37. 37.Department of Pathology L113Oregon Health Sciences UniversityPortlandUSA
  38. 38.Departments of Neurology & Neurobiology of AgingKanazawa University Graduate School of Medical SciencesKanazawaJapan
  39. 39.Department of Pathology (Neuropathology) and Sanders-Brown Center on AgingUniversity of KentuckyLexingtonUSA

Personalised recommendations