Skip to main content

Advertisement

Log in

Molecular sub-group-specific immunophenotypic changes are associated with outcome in recurrent posterior fossa ependymoma

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Better understanding of ependymoma (EPN) biology at relapse is needed to improve therapy at this critical event. Convincing data exist defining transcriptionally distinct posterior fossa (PF) sub-groups A and B at diagnosis. The clinical and biological consequence of these sub-groups at recurrence has not yet been defined. Genome and transcriptome microarray profiles and clinical variables of matched primary and first recurrent PF EPN pairs were used to identify biologically distinct patterns of progression between EPN sub-groups at recurrence. Key findings were validated by histology and immune function assays. Transcriptomic profiles were partially conserved at recurrence. However, 4 of 14 paired samples changed sub-groups at recurrence, and significant sub-group-specific transcriptomic changes between primary and recurrent tumors were identified, which were predominantly immune-related. Further examination revealed that Group A primary tumors harbor an immune gene signature and cellular functionality consistent with an immunosuppressive phenotype associated with tissue remodeling and wound healing. Conversely, Group B tumors develop an adaptive, antigen-specific immune response signature and increased T-cell infiltration at recurrence. Clinical distinctions between sub-groups become more apparent after first recurrence. Group A tumors were more often sub-totally resected and had a significantly shorter time to subsequent progression and worse overall survival. Minimal tumor-specific genomic changes were observed for either PF Groups A or B at recurrence. Molecular sub-groups of PF EPN convey distinct immunobiologic signatures at diagnosis and recurrence, providing potential biologic rationale to their disparate clinical outcomes. Immunotherapeutic approaches may be warranted, particularly in Group A PF EPN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413(6857):732–738

    Article  CAS  PubMed  Google Scholar 

  2. Arimappamagan A, Somasundaram K, Thennarasu K et al (2013) A fourteen gene GBM prognostic signature identifies association of immune response pathway and mesenchymal subtype with high risk group. PLoS One 8(4):e62042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bouffet E, Perilongo G, Canete A, Massimino M (1998) Intracranial ependymomas in children: a critical review of prognostic factors and a plea for cooperation. Med Pediatr Oncol 30(6):319–29 (discussion 329–31)

    Google Scholar 

  5. Choi C, Xu X, Oh JW, Lee SJ, Gillespie GY, Park H, Jo H, Benveniste EN (2001) Fas-induced expression of chemokines in human glioma cells: involvement of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase. Cancer Res 61(7):3084–3091

    CAS  PubMed  Google Scholar 

  6. David N Louis, Ohgaki H (2007) WHO classification of tumours of the central nervous system [electronic resource]. World Health Organization

  7. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4(5):P3

    Article  PubMed Central  PubMed  Google Scholar 

  8. Donson AM, Birks DK, Barton VN, Wei Q, Kleinschmidt-DeMasters BK, Handler MH, Waziri AE, Wang M, Foreman NK (2009) Immune gene and cell enrichment is associated with a good prognosis in ependymoma. J Immunol 183(11):7428–7440

    Article  CAS  PubMed  Google Scholar 

  9. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Engler JR, Robinson AE, Smirnov I, Hodgson JG, Berger MS, Gupta N, James CD, Molinaro A, Phillips JJ (2012) Increased microglia/macrophage gene expression in a subset of adult and pediatric astrocytomas. PLoS One 7(8):e43339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Foreman NK, Love S, Thorne R (1996) Intracranial ependymomas: analysis of prognostic factors in a population-based series. Pediatr Neurosurg 24(3):119–125

    Article  CAS  PubMed  Google Scholar 

  12. Foreman NK, Love S, Gill SS, Coakham HB (1997) Second-look surgery for incompletely resected fourth ventricle ependymomas: technical case report. Neurosurgery 40(4):856–60 (discussion 860)

    Google Scholar 

  13. Fouladi M, Stewart CF, Blaney SM, Onar-Thomas A, Schaiquevich P, Packer RJ, Gajjar A, Kun LE, Boyett JM, Gilbertson RJ (2010) Phase I Trial of Lapatinib in Children with refractory CNS malignancies: a pediatric brain tumor consortium study. J Clin Oncol 28(27):4221–4227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Fouladi M, Stewart CF, Olson J et al (2011) Phase I trial of MK-0752 in children with refractory CNS malignancies: a pediatric brain tumor consortium study. J Clin Oncol 29(26):3529–3534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gajjar A, Packer RJ, Foreman NK, Cohen K, Haas-Kogan D, Merchant TE, on behalf of the COG Brain Tumor Committee (2012) Children’s Oncology Group’s 2013 blueprint for research: Central nervous system tumors. Pediatr Blood Cancer n/a–n/a

  16. Goldwein JW (1990) Recurrent intracranial ependymomas in children survival, patterns of failure, and prognostic factors. Cancer 66:557–563

    Article  CAS  PubMed  Google Scholar 

  17. Griesinger AM, Birks DK, Donson AM, Amani V, Hoffman LM, Waziri A, Wang M, Handler MH, Foreman NK (2013) Characterization of distinct immunophenotypes across pediatric brain tumor types. J Immunol. doi:10.4049/jimmunol.1301966

    Google Scholar 

  18. Hishii M, Nitta T, Ishida H, Ebato M, Kurosu A, Yagita H, Sato K, Okumura K (1995) Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery 37(6):1160–6 (discussion 1166–7)

    Google Scholar 

  19. Hoffman LM, Reed Plimpton S, Foreman NK, Stence NV, Hankinson TC, Handler MH, Hemenway MS, Vibhakar R, Liu AK (2013) Fractionated stereotactic radiosurgery for recurrent ependymoma in children. J Neurooncol. doi:10.1007/s11060-013-1259-3

    Google Scholar 

  20. Jakacki RI, Hamilton M, Gilbertson RJ, Blaney SM, Tersak J, Krailo MD, Ingle AM, Voss SD, Dancey JE, Adamson PC (2008) Pediatric phase I and pharmacokinetic study of erlotinib followed by the combination of erlotinib and temozolomide: a Children’s Oncology Group Phase I Consortium Study. J Clin Oncol 26(30):4921–4927

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Johnson RA, Wright KD, Poppleton H et al (2010) Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature 466(7306):632–636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kilday JP, Mitra B, Domerg C et al (2012) Copy number gain of 1q25 predicts poor progression-free survival for pediatric intracranial ependymomas and enables patient risk stratification: a prospective European clinical trial cohort analysis on behalf of the children’s cancer leukaemia group (CCLG), societe Francaise d’oncologie pediatrique (SFOP), and international society for pediatric oncology (SIOP). Clin Cancer Res 18(7):2001–2011

    Article  CAS  PubMed  Google Scholar 

  23. Komohara Y, Ohnishi K, Kuratsu J, Takeya M (2008) Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol 216(1):15–24

    Article  CAS  PubMed  Google Scholar 

  24. Korshunov A, Witt H, Hielscher T et al (2010) Molecular staging of intracranial ependymoma in children and adults. J Clin Oncol 28(19):3182–3190

    Article  PubMed  Google Scholar 

  25. Lathia JD, Li M, Hall PE et al (2012) Laminin alpha 2 enables glioblastoma stem cell growth. Ann Neurol 72(5):766–778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Nilsen TW, Baglioni C (1979) Mechanism for discrimination between viral and host mRNA in interferon-treated cells. Proc Natl Acad Sci USA 76(6):2600–2604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Olshen AB, Venkatraman ES, Lucito R, Wigler M (2004) Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5(4):557–572

    Article  PubMed  Google Scholar 

  28. Parsa AT, Waldron JS, Panner A et al (2007) Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13(1):84–88

    Article  CAS  PubMed  Google Scholar 

  29. Peiffer DA, Le JM, Steemers FJ et al (2006) High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res 16(9):1136–1148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Peyre M, Commo F, Dantas-Barbosa C et al (2010) Portrait of ependymoma recurrence in children: biomarkers of tumor progression identified by dual-color microarray-based gene expression analysis. PLoS One 5(9):e12932

    Article  PubMed Central  PubMed  Google Scholar 

  31. Phillips HS, Kharbanda S, Chen R et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173

    Article  CAS  PubMed  Google Scholar 

  32. Robertson PL, Zeltzer PM, Boyett JM et al (1998) Survival and prognostic factors following radiation therapy and chemotherapy for ependymomas in children: a report of the Children’s cancer group. J Neurosurg 88(4):695–703

    Article  CAS  PubMed  Google Scholar 

  33. Rodrigues JC, Gonzalez GC, Zhang L et al (2010) Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro Oncol 12(4):351–365

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418(6898):646–650

    Article  CAS  PubMed  Google Scholar 

  35. Sippel TR, White J, Nag K, Tsvankin V, Klaassen M, Kleinschmidt-DeMasters BK, Waziri A (2011) Neutrophil degranulation and immunosuppression in patients with GBM: restoration of cellular immune function by targeting arginase I. Clin Cancer Res 17(22):6992–7002

    Article  CAS  PubMed  Google Scholar 

  36. Vogt L, Schmitz N, Kurrer MO et al (2006) VSIG4, a B7 family-related protein, is a negative regulator of T cell activation. J Clin Invest 116(10):2817–2826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Wani K, Armstrong TS, Vera-Bolanos E et al (2012) A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol 123(5):727–738

    Article  CAS  PubMed  Google Scholar 

  38. Waziri A (2010) Glioblastoma-derived mechanisms of systemic immunosuppression. Neurosurg Clin N Am 21(1):31–42

    Article  PubMed  Google Scholar 

  39. Witt H, Mack SC, Ryzhova M et al (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20(2):143–157

    Article  CAS  PubMed  Google Scholar 

  40. Wrann M, Bodmer S, de Martin R, Siepl C, Hofer-Warbinek R, Frei K, Hofer E, Fontana A (1987) T cell suppressor factor from human glioblastoma cells is a 12.5-kd protein closely related to transforming growth factor-beta. EMBO J 6(6):1633–1636

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Wu Z, Irizarry RA, Gentleman R, Murillo FM, Spencer F (2004) A model based background adjustment for oligonucleotide expression arrays

Download references

Acknowledgments

This work was supported by the National Institutes of Health (R01 CA140614), Ruth L. Kirschstein National Research Service Award (T32 CA082086-13), the Tanner Seebaum Foundation, and the Cancer League of Colorado, Inc.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsey M. Hoffman.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffman, L.M., Donson, A.M., Nakachi, I. et al. Molecular sub-group-specific immunophenotypic changes are associated with outcome in recurrent posterior fossa ependymoma. Acta Neuropathol 127, 731–745 (2014). https://doi.org/10.1007/s00401-013-1212-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-013-1212-8

Keywords

Navigation