Skip to main content
Log in

Human lissencephaly with cerebellar hypoplasia due to mutations in TUBA1A: expansion of the foetal neuropathological phenotype

  • Case Report
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Neuronal migration disorders account for a substantial number of cortical malformations, the most severe forms being represented by lissencephalies. Classical lissencephaly has been shown to result from mutations in LIS1 (PAFAH1B1; MIM#601545), DCX (Doublecortin; MIM#300121), ARX (Aristaless-related homeobox gene; MIM#300382), RELN (Reelin; MIM#600514) and VLDLR (Very low density lipoprotein receptor; MIM#224050). More recently, de novo missense mutations in the alpha-tubulin 1a gene (TUBA1A) located on chromosome 12q13.12, have also been associated with more or less severe defects of cortical development, resulting in complete agyria in the most severe cases of lissencephaly. We report here the cerebral lesions in a 36 weeks’ gestation female foetus with a novel de novo missense mutation in the TUBA1A gene, presenting the most severe antenatal phenotype reported so far. Using routine immunohistochemistry and confocal microscopy, we show evidence for defects in axonal transport in addition to defects in neuronal migration and differentiation, giving new insights to the pathophysiology of this form of lissencephaly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abuhatzira L, Shemer R, Razin A (2009) MeCP2 involvement in the regulation of neuronal alpha-tubulin production. Hum Mol Genet 18:1415–1423

    Article  CAS  PubMed  Google Scholar 

  2. Bahi-Buisson N, Poirier K, Boddaert N et al (2008) Refinement of cortical dysgeneses spectrum associated with TUBA1A mutations. J Med Genet 45:647–653

    Article  CAS  PubMed  Google Scholar 

  3. Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB (2005) A developmental and genetic classification for malformations of cortical development. Neurology 65:1873–1887

    Article  CAS  PubMed  Google Scholar 

  4. Berry-Kravis E, Israel J (1994) X-linked pachygyria and agenesis of the corpus callosum: evidence for an X chromosome lissencephaly locus. Ann Neurol 36:229–233

    Article  CAS  PubMed  Google Scholar 

  5. Bonneau D, Toutain A, Laquerrière A et al (2002) X-linked lissencephaly with absent corpus callosum and ambiguous genitalia (XLAG): clinical, magnetic resonance imaging, and neuropathological findings. Ann Neurol 51:340–349

    Article  PubMed  Google Scholar 

  6. Boycott KM, Flavelle S, Bureau A et al (2005) Homozygous deletion of the very low density lipoprotein receptor gene causes autosomal recessive cerebellar hypoplasia with cerebral gyral simplification. Am J Hum Genet 77:477–483

    Article  CAS  PubMed  Google Scholar 

  7. Chang BS, Duzcan F, Kim S et al (2007) The role of RELN in lissencephaly and neuropsychiatric disease. Am J Med Genet B Neuropsychiatr Genet 144B:58–63

    Article  CAS  PubMed  Google Scholar 

  8. Coksaygan T, Magnus T, Cai J et al (2006) Neurogenesis in Talpha-1 tubulin transgenic mice during development and after injury. Exp Neurol 197:475–485

    Article  CAS  PubMed  Google Scholar 

  9. Des Portes V, Pinard JM, Billuart P et al (1998) A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome. Cell 92:51–61

    Article  CAS  PubMed  Google Scholar 

  10. Dobyns WB, Leventer RJ (2003) Lissencephaly: the clinical and molecular bases of diffuse malformations of neuronal migration. In: Barth PG (ed) International review of child neurology series. Mac Keith Press, London, pp 24–57

    Google Scholar 

  11. Dobyns WB, Berry-Kravis E, Havernick NJ, Holden KR, Viskochil D (1999) X-linked lissencephaly with absent corpus callosum and ambiguous genitalia. Am J Med Genet 86:331–337

    Article  CAS  PubMed  Google Scholar 

  12. Fallet-Bianco C, Loeuillet L, Poirier K et al (2008) Neuropathological phenotype of a distinct form of lissencephaly associated with mutations in TUBA1A. Brain 131:2304–2320

    Article  PubMed  Google Scholar 

  13. Francis F, Koulakoff A, Boucher D et al (1999) Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23:247–256

    Article  CAS  PubMed  Google Scholar 

  14. Francis F, Meyer G, Fallet-Bianco C et al (2006) Human disorders of cortical development: from past to present. Eur J Neurosci 23:877–893

    Article  PubMed  Google Scholar 

  15. Gleeson JG, Allen KM, Fox JW et al (1998) Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92:63–72

    Article  CAS  PubMed  Google Scholar 

  16. Gleeson JG, Lin PT, Flanagan LA, Walsh CA (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23:257–271

    Article  CAS  PubMed  Google Scholar 

  17. Gloster A, El-Bizri H, Bamji SX, Rogers D, Miller FD (1999) Early induction of Talpha1 alpha-tubulin transcription in neurons of the developing nervous system. J Comp Neurol 405:45–60

    Article  CAS  PubMed  Google Scholar 

  18. Guilhard-Costa AM, Larroche JC (1990) Differential growth between the fetal brain and infratentorial parts. Early Hum Dev 23:27–40

    Article  Google Scholar 

  19. Hammond JW, Cai D, Verhey KJ (2008) Tubulin modifications and their cellular functions. Curr Opin Cell Biol 20:71–76

    Article  CAS  PubMed  Google Scholar 

  20. Hong SE, Shugart YY, Huang DT et al (2000) Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 26:93–96

    Article  CAS  PubMed  Google Scholar 

  21. Horesh D, Sapir T, Francis F et al (1999) Doublecortin, a stabilizer of microtubules. Hum Mol Genet 8:1599–1610

    Article  CAS  PubMed  Google Scholar 

  22. Jaglin XH, Chelly J (2009) Tubulin-related cortical dysgeneses: microtubule dysfunction underlying neuronal migration defects. Trends Genet 25:555–566

    Article  CAS  PubMed  Google Scholar 

  23. Kato M, Dobyns WB (2003) Lissencephaly and the molecular basis of neuronal migration. Hum Mol Genet 12:R89–R96

    Article  CAS  PubMed  Google Scholar 

  24. Keays DA, Tian G, Poirier K et al (2007) Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell 128:45–57

    Article  CAS  PubMed  Google Scholar 

  25. Kikkawa M, Hirokawa N (2006) High-resolution cryo-EM maps show the nucleotide binding pocket of KIF1A in open and closed conformations. EMBO J 25:4187–4194

    Article  CAS  PubMed  Google Scholar 

  26. Kitamura K, Yanazawa M, Sugiyama N et al (2002) Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet 32:359–369

    Article  CAS  PubMed  Google Scholar 

  27. Löwe J, Li H, Downing KH, Nogales E (2001) Refined structure of alpha beta-tubulin at 3.5A resolution. J Mol Biol 313:1045–1057

    Article  PubMed  Google Scholar 

  28. Moores CA, Perderiset M, Francis F, Chelly J, Houdusse A, Milligan RA (2004) Mechanism of microtubule stabilization by doublecortin. Mol Cell 14:833–839

    Article  CAS  PubMed  Google Scholar 

  29. Moores CA, Perderiset M, Kappeler C et al (2006) Distinct roles of doublecortin modulating the microtubule cytoskeleton. EMBO J 25:4448–4457

    Article  CAS  PubMed  Google Scholar 

  30. Morris-Rosendahl DJ, Najm J, Lachmeijer AM (2008) Refining the phenotype of alpha-1a Tubulin (TUBA1A) mutation in patients with classical lissencephaly. Clin Genet 74:425–433

    Article  CAS  PubMed  Google Scholar 

  31. Okazaki S, Ohsawa M, Kuki I et al (2008) Aristaless-related homeobox gene disruption leads to abnormal distribution of GABAergic interneurons in human neocortex: evidence based on a case of X-linked lissencephaly with abnormal genitalia (XLAG). Acta Neuropathol 116:453–462

    Article  CAS  PubMed  Google Scholar 

  32. Poirier K, Keays DA, Francis F et al (2007) Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A (TUBA1A). Hum Mutat 28:1055–1064

    Article  CAS  PubMed  Google Scholar 

  33. Reiner O, Carrozzo R, Shen Y et al (1993) Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364:717–721

    Article  CAS  PubMed  Google Scholar 

  34. Sapir T, Elbaum M, Reiner O (1997) Reduction of microtubule catastrophe events by LIS1, platelet-activating factor acetylhydrolase subunit. EMBO J 16:6977–6984

    Article  CAS  PubMed  Google Scholar 

  35. Tian G, Kong XP, Jaglin XH, Chelly J, Keays D, Cowan NJ (2008) A pachygyria-causing alpha-tubulin mutation results in inefficient cycling with CCT and a deficient interaction with TBCB. Mol Biol Cell 19:1152–1161

    Article  CAS  PubMed  Google Scholar 

  36. Wei SM, Xie CG, Abe Y, Cai JT (2009) ADP-ribosylation factor like 7 (ARL7) interacts with α-tubulin and modulates intracellular vesicular transport. Biochem Biophys Res Commun 384:352–356

    Article  CAS  PubMed  Google Scholar 

  37. Zaki M, Shehab M, El-Aleem AA et al (2007) Identification of a novel recessive RELN mutation using a homozygous balanced reciprocal translocation. Am J Med Genet A 143A:939–944

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Philippe Bourgeois for his technical assistance, the plateform Primagen for confocal analysis techniques and Esther Le Roy for the iconography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie Laquerrière.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lecourtois, M., Poirier, K., Friocourt, G. et al. Human lissencephaly with cerebellar hypoplasia due to mutations in TUBA1A: expansion of the foetal neuropathological phenotype. Acta Neuropathol 119, 779–789 (2010). https://doi.org/10.1007/s00401-010-0684-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-010-0684-z

Keywords

Navigation