Skip to main content

Advertisement

Log in

Oxidative stress damage and oxidative stress responses in the choroid plexus in Alzheimer’s disease

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Choroid plexus homogenates from 27 cases with Alzheimer disease-related pathology (AD), stages I/0 (n = 5), III–IV/0-B (n = 15) and V–VI/B-C (n = 7) and 3 age-matched controls (no clinical symptoms, no neuropathological lesions) were processed for gel electrophoresis and western blotting for oxidation markers carboxymethyl-lysine (CML) and N-carboxyethyl-lysine (CEL). Increased CEL and CML expression was seen in AD cases stages IVB, and V–VI/B-C when compared to controls and cases with AD-related pathology classified as I/0 and III/0. Variable stress damage was seen in stage III/B. Although lower stages of AD did not show β-amyloid deposition in the choroid plexus, the amount of β-amyloid was very variable at stages V/VI as revealed by western blotting, suggesting that other factors in addition to local fibrillar β-amyloid were associated with oxidative damage in the choroid plexus. Two-dimensional gel electrophoresis and western blotting to CEL and CML in combination with mass spectrometry disclosed increased intensity of variable spots in AD cases leading to the identification of tyrosine 3/tryptophan 5-monooxygenase activation protein, zeta polypeptide, tropomyosin 3 isoform, and apolipoprotein A-II (ApoA-II) as targets of increased oxidative damage in AD. Oxidation of these proteins may result in impaired protein interactions, protein folding and protein kinase activity; abnormal function of endothelial and vascular smooth muscle cells; and impaired HDL-cholesterol metabolism in the choroid plexus in advanced stages of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baynes JW, Thorpe SR (2000) Glycoxidation and lipoxidation in atherogenesis. Free Radic Biol Med 28:1708–1716

    Article  PubMed  CAS  Google Scholar 

  2. Berg D, Holzmann C, Riess O (2003) 14-3-3 proteins in the nervous system. Nat Rev Neurosci 4:752–762

    Article  PubMed  CAS  Google Scholar 

  3. Boyd-Kimball D, Castegna A, Sultana R, Poon HF, Petroze R, Lynn BC, Klein JB, Butterfield DA (2005) Proteomic identification of proteins oxidized by Abeta(1-42) in synaptosomes: implications for Alzheimer’s disease. Brain Res 1044:206–215

    Article  PubMed  CAS  Google Scholar 

  4. Boyd-Kimball D, Poon HF, Lynn BC, Cai J, Pierce WM Jr, Klein JB, Ferguson J, Link CD, Butterfield DA (2006) Proteomic identification of proteins specifically oxidized in Caenorhabditis elegans expressing human Abeta(1-42): implications for Alzheimer’s disease. Neurobiol Aging 27:1239–1249

    Article  PubMed  CAS  Google Scholar 

  5. Boyd-Kimball D, Sultana R, Poon HF, Lynn BC, Casamenti F, Pepeu G, Klein JB, Butterfield BA (2005) Proteomic identification of proteins specifically oxidized by intracerebral injection of amyloid beta-peptide (1-42) into rat brain: implications for Alzheimer’s disease. Neuroscience 132:313–324

    Article  PubMed  CAS  Google Scholar 

  6. Braak H, Braak E (1999) Temporal sequence of Alzheimer’s disease-related pathology. In: Peters A, Morrison JH (eds) Cerebral cortex, vol 14. Neurodegenerative and age-related changes in structure and function of cerebral cortex. Kluwer Academic/Plenum Press, New York, pp 475–512

    Google Scholar 

  7. Butterfield DA, Drake J, Pocernich C, Castegna A (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for β-amyloid peptide. Trends Mol Med 7:548–554

    Article  PubMed  CAS  Google Scholar 

  8. Butterfield DA, Lauderback CM (2002) Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Rad Biol Med 32:1050–1060

    Article  PubMed  CAS  Google Scholar 

  9. Butterfield DA, Perluigi M, Sultana R (2006) Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol 545:39–50

    Article  PubMed  CAS  Google Scholar 

  10. Butterfield DA, Poon HF, St Clair D, Keller JN, Pierce WM, Klein JB, Markesbery WR (2006) Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer’s disease. Neurobiol Dis 22:223–232

    Article  PubMed  CAS  Google Scholar 

  11. Canton M, Neverova I, Menabo R, Van Eyk J, Di Lisa F (2004) Evidence of myofibrillar protein oxidation induced by postischemic reperfusion in isolated rat hearts. Am J Physiol Heart Circ Physiol 286:H870–H877

    Article  PubMed  CAS  Google Scholar 

  12. Canton M, Skyschally A, Menabo R, Boengler K, Gres P, Schulz R, Haude M, Erbel R, Di Lisa F, Heusch G (2006) Oxidative modification of tropomyosin and myocardial dysfunction following coronary microembolization. Eur Heart J 27:875–881

    Article  PubMed  CAS  Google Scholar 

  13. Dougherty MK, Morrison DK (2004) Unlocking the code of 14-3-3. J Cell Sci 117:1875–1884

    Article  PubMed  CAS  Google Scholar 

  14. Drake J, Link CD, Butterfied DA (2003) Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid beta-peptide 1-42 in a transgenic Caenorhabditis elegans model. Neurobiol Aging 24:415–420

    Article  PubMed  CAS  Google Scholar 

  15. Duyckaerts C, Dickson DW (2003) Neuropathology of Alzheimer’s disease. In: Dickson D (ed) Neurodegeneration: the molecular pathology of dementia and movement disorders. ISN Neuropath Press, Basel, pp 47–68

    Google Scholar 

  16. Dzieglielewska KM, Ek J, Habgood MD, Saunders NR (2001) Development of the choroid plexus. Microsc Res Technol 52:5–20

    Article  Google Scholar 

  17. Ferrer I, Martinez A, Boluda S, Parchi P, Barrachina M (2008) Brain banks: benefits, limitations and cautions concerning the use of post-mortem brain tissue for molecular studies. Cell Tissue Bank 9:181–194

    Article  PubMed  CAS  Google Scholar 

  18. Houle F, Huot J (2006) Dysregulation of the endothelial cellular response to oxidative stress in cancer. Mol Carcinog 45:362–367

    Article  PubMed  CAS  Google Scholar 

  19. Houle F, Poirier A, Dumaresq J, Huot J (2007) DAP kinase mediates the phosphorylation of tropomyosin-1 downstream of the ERK pathway, which regulates the formation of stress fibers in response to oxidative stress. J Cell Sci 120:3666–3677

    Article  PubMed  CAS  Google Scholar 

  20. Lowe J, Mirra SS, Hyman B, Dickson DW (2008) Ageing and dementia. In: Love S, Louis DN, Ellison DW (eds) Greenfield’s leuropathology. Hodder Arnold, London, pp 1031–1152

    Google Scholar 

  21. Martín-Campos JM, Escola-Gil JC, Ribas V, Blanco-Vaca F (2004) Apolipoprotein A-II, genetic variation on chromosome 1q21-q24, and disease susceptibility. Curr Opin Lipidol 15:247–253

    Article  PubMed  Google Scholar 

  22. Moran CM, Garriock RJ, Miller MK, Heimark RL, Gregorio CC, Krieg PA (2008) Expression of the fast twitch troponin complex, fTnT, fTnI and fTnC, in vascular smooth muscle. Cell Motil Cytoskeleton 65:652–661

    Article  PubMed  CAS  Google Scholar 

  23. Nicholson-Flynn K, Hitchcock-DeGregori SE, Levitt P (1996) Restricted expression of the actin-regulatory protein, tropomyosin, defines distinct boundaries, evaginating neuroepithelium, and choroids plexus forerunners during early CNS development. J Neurosci 16:6853–6863

    PubMed  CAS  Google Scholar 

  24. Pamplona R, Dalfó E, Ayala V, Bellmunt MJ, Prat J, Ferrer I, Portero-Otín M (2005) Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. J Biol Chem 280:21522–21530

    Article  PubMed  CAS  Google Scholar 

  25. Pamplona R, Ilieva E, Ayala V, Bellmunt MJ, Cacabelos D, Dalfo E, Ferrer I, Portero-Otin M (2008) Maillard reaction versus other nonenzymatic modifications in neurodegenerative processes. Ann N Y Acad Sci 1126:315–319

    Article  PubMed  CAS  Google Scholar 

  26. Reed T, Perluigi M, Sultana R, Pierce WM, Klein JB, Turner DM, Coccia R, Markesbery WR, Butterfield DA (2008) Proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer’s disease. Neurobiol Dis 30:107–120

    Article  PubMed  CAS  Google Scholar 

  27. Santpere G, Puig B, Ferrer I (2007) Oxidative damage of 14-3-3 zeta and gamma isoforms in Alzheimer’s disease and cerebral amyloid angiopathy. Neuroscience 146:1640–1651

    Article  PubMed  CAS  Google Scholar 

  28. Scanu AM, Edelkstein C (2008) HDL: bridging past and present with a look at the future. FASEB J 22:4044–4054

    Article  PubMed  CAS  Google Scholar 

  29. Shin SJ, Lee SE, Boo JH, Kim M, Yoon YD, Kim SI, Mook-Jung I (2004) Profiling proteins related to amyloid deposited brain of Tg2576 mice. Proteomics 4:3359–3368

    Article  PubMed  CAS  Google Scholar 

  30. Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Merchant M, Markesbery WR, Butterfield DA (2006) Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol Aging 27:1564–1576

    Article  PubMed  CAS  Google Scholar 

  31. Sultana R, Newman SF, Abdul HM, Cai J, Pierce WM, Klein JB, Merchant M, Butterfield DA (2006) Protective effect of D609 against amyloid-beta 1-42 induced oxidative modification of neuronal proteins: redox proteomics study. J Neurosci Res 84:409–417

    Article  PubMed  CAS  Google Scholar 

  32. Sultana R, Perluigi M, Buttefield DA (2009) Oxidatively modified proteins in Alzheimer’s disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis. Acta Neuropathol 118:131–150

    Article  PubMed  CAS  Google Scholar 

  33. Tailleux A, Duriez P, Fruchart JC, Clavey V (2002) Apolipoprotein A-II, HDL metabolism and atherosclerosis. Atherosclerosis 164:1–13

    Article  PubMed  CAS  Google Scholar 

  34. Takahashi Y (2003) The 14-3-3 proteins: gene, gene expression, and function. Neurochem Res 28:1265–1273

    Article  PubMed  CAS  Google Scholar 

  35. Terni B, Boada J, Portero-Otín M, Pamplona R, Ferrer I (2009) Mitochondrial ATP-synthase in the entorhinal cortex is a target of oxidative stress at stages I/II of Alzheimer’s disease pathology. Brain Pathol (in press), PMID 19298596

  36. Varadarajan S, Yatin S, Aksenova M, Butterfield DA (2000) Review: Alzheimer’s amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 130:184–208

    Article  PubMed  CAS  Google Scholar 

  37. Vargas T, Ugalde C, Spuch C, Antequera D, Morán MJ, Martín MA, Ferrer I, Bermejo F, Carro E (2008) Abeta accumulation in choroid plexus is associated with mitochondrial-induced apoptosis. Neurobiol Aging (in press), PMID 18838197

Download references

Acknowledgments

This work was funded by grant PI08/0582 from the Spanish Ministry of Health, Carlos III Institute of Health. We thank Maria Antonia Odena and Eliandre Oliveira of the Proteomics Platform, Barcelona Science Park, for mass spectrometry study; and T. Yohannan for editorial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isidro Ferrer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez-Gracia, E., Blanco, R., Carmona, M. et al. Oxidative stress damage and oxidative stress responses in the choroid plexus in Alzheimer’s disease. Acta Neuropathol 118, 497–504 (2009). https://doi.org/10.1007/s00401-009-0574-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-009-0574-4

Keywords

Navigation