Skip to main content

Advertisement

Log in

Volume and neuron number of the lateral geniculate nucleus in schizophrenia and mood disorders

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Subjects with schizophrenia show deficits in visual perception that suggest changes predominantly in the magnocellular pathway and/or the dorsal visual stream important for visiospatial perception. We previously found a substantial 25% reduction in neuron number of the primary visual cortex (Brodmann’s area 17, BA17) in postmortem tissue from subjects with schizophrenia. Also, many studies have found reduced volume and neuron number of the pulvinar—the large thalamic association nucleus involved in higher-order visual processing. Here, we investigate if the lateral geniculate nucleus (LGN), the visual relay nucleus of the thalamus, has structural changes in schizophrenia. We used stereological methods based on unbiased principles of sampling (Cavalieri’s principle and the optical fractionator) to estimate the total volume and neuron number of the magno- and parovocellular parts of the left LGN in postmortem brains from nine subjects with schizophrenia, seven matched normal comparison subjects and 13 subjects with mood disorders. No significant schizophrenia-related structural differences in volume or neuron number of the left LGN or its major subregions were found, but we did observe a significantly increased total volume of the LGN, and of the parvocellular lamina and interlaminar regions, in the mood group. These findings do not support the hypothesis that subjects with schizophrenia have structural changes in the LGN. Therefore, our previous observation of a schizophrenia-related reduction of the primary visual cortex is probably not secondary to a reduction in the LGN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abitz M, Nielsen RD, Jones EG, Laursen H, Graem N, Pakkenberg B (2007) Excess of neurons in the human newborn mediodorsal thalamus compared with that of the adult. Cereb Cortex 17:2573–2578. doi:10.1093/cercor/bhl163

    Article  PubMed  Google Scholar 

  2. Algan O, Rakic P (1997) Radiation-induced, lamina-specific deletion of neurons in the primate visual cortex. J Comp Neurol 381:335–352. doi:10.1002/(SICI)1096-9861(19970512)381:3<335::AID-CNE6>3.0.CO;2-3

    Article  PubMed  CAS  Google Scholar 

  3. American Psychiatric Association (1994) DSM-IV. Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DC

  4. Andersen BB, Gundersen HJG (1999) Pronounced loss of cell nuclei and anisotropic deformation of thick sections. J Microsc 196:69–73. doi:10.1046/j.1365-2818.1999.00555.x

    Article  PubMed  CAS  Google Scholar 

  5. Andreasen NC, O’Leary DS, Flaum M, Nopoulos P, Watkins GL, Boles Ponto LL et al (1997) Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naïve patients. Lancet 349:1730–1734. doi:10.1016/S0140-6736(96)08258-X

    Article  PubMed  CAS  Google Scholar 

  6. Andrews TJ, Halpern SD, Purves D (1997) Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J Neurosci 17:2859–2868

    PubMed  CAS  Google Scholar 

  7. Ardekani BA, Bappal A, D’Angelo D, Ashtari M, Lencz T, Szeszko PR et al (2005) Brain morphometry using diffusion-weighted magnetic resonance imaging: application to schizophrenia. NeuroReport 16:1455–1459. doi:10.1097/01.wnr.0000177001.27569.06

    Article  PubMed  Google Scholar 

  8. Ardekani BA, Nierenberg J, Hoptman MJ, Javitt DC, Lim KO (2003) MRI study of white matter diffusion anisotropy in schizophrenia. NeuroReport 14:2025–2029. doi:10.1097/00001756-200311140-00004

    Article  PubMed  Google Scholar 

  9. Armstrong E (1979) A quantitative comparison of the hominoid thalamus. I. Specific sensory relay nuclei. Am J Phys Anthropol 51:365–382. doi:10.1002/ajpa.1330510308

    Article  PubMed  CAS  Google Scholar 

  10. Balado M, Franke E (1937) Das Corpus geniculatum externum. In: Foerster O, Rüdin E, Spatz H (eds) Monog. a. d. Gesamtgeb. d. Neurol. u. Psychiat, vol 62, pp 1–118. Springer, Berlin

  11. Baryshnikova LM, von Bohlen und Halbach O, Kaplan S, von Bartheld CS (2006) Two distinct events, section compression and loss of particles (“lost caps”), contribute to z-axis distortion and bias in optical disector counting. Microsc Res Tech 69:738–756. doi:10.1002/jemt.20345

    Article  PubMed  Google Scholar 

  12. Bogerts B, Falkai P, Haupts M, Greve B, Ernst S, Tapernon-Franz U et al (1990) Post-mortem volume measurements of limbic system and basal ganglia structures in chronic schizophrenics. Initial results from a new brain collection. Schizophr Res 3:295–301. doi:10.1016/0920-9964(90)90013-W

    Article  PubMed  CAS  Google Scholar 

  13. Butler PD, Hoptman MJ, Nierenberg J, Foxe JJ, Javitt DC, Lim KO (2006) Visual white matter integrity in schizophrenia. Am J Psychiatry 163:2011–2013. doi:10.1176/appi.ajp.163.11.2011

    Article  PubMed  Google Scholar 

  14. Butler PD, Javitt DC (2005) Early-stage visual processing deficits in schizophrenia. Curr Opin Psychiatry 18:151–157. doi:10.1097/00001504-200503000-00008

    Article  PubMed  Google Scholar 

  15. Butler PD, Martinez A, Foxe JJ, Kim D, Zemon V, Silipo G et al (2007) Subcortical visual dysfunction in schizophrenia drives secondary cortical impairments. Brain 130:417–430. doi:10.1093/brain/awl233

    Article  PubMed  Google Scholar 

  16. Butler PD, Zemon V, Schechter I, Saperstein AM, Hoptman MJ, Lim KO et al (2005) Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch Gen Psychiatry 62:495–504. doi:10.1001/archpsyc.62.5.495

    Article  PubMed  Google Scholar 

  17. Byne W, Buchsbaum MS, Kemether E, Hazlett EA, Shinwari A, Mitropoulou V et al (2001) Magnetic resonance imaging of the thalamic mediodorsal nucleus and pulvinar in schizophrenia and schizotypal personality disorder. Arch Gen Psychiatry 58:133–140. doi:10.1001/archpsyc.58.2.133

    Article  PubMed  CAS  Google Scholar 

  18. Byne W, Buchsbaum MS, Mattiace LA, Hazlett EA, Kemether E, Elhakem SL et al (2002) Postmortem assessment of thalamic nuclear volumes in subjects with schizophrenia. Am J Psychiatry 159:59–65. doi:10.1176/appi.ajp.159.1.59

    Article  PubMed  Google Scholar 

  19. Byne W, Fernandes J, Haroutunian V, Huacon D, Kidkardnee S, Kim J et al (2007) Reduction of right medial pulvinar volume and neuron number in schizophrenia. Schizophr Res 90:71–75. doi:10.1016/j.schres.2006.10.006

    Article  PubMed  Google Scholar 

  20. Callaway EM (2005) Structure and function of parallel pathways in the primate early visual system. J Physiol 566:13–19. doi:10.1113/jphysiol.2005.088047

    Article  PubMed  CAS  Google Scholar 

  21. Chacko LW (1948) The laminar pattern of the lateral geniculate body in the primates. J Neurol Neurosurg Psychiatry 11:211–224

    Article  PubMed  CAS  Google Scholar 

  22. Chen W, Zhu X-H (2001) Correlation of activation sizes between lateral geniculate nucleus and primary visual cortex in humans. Magn Reson Med 45:202–205. doi:10.1002/1522-2594(200102)45:2<202::AID-MRM1027>3.0.CO;2-S

    Article  PubMed  CAS  Google Scholar 

  23. Chen Y, Levy DL, Sheremata S, Holzman PS (2004) Compromised late-stage motion processing in schizophrenia. Biol Psychiatry 55:834–841. doi:10.1016/j.biopsych.2003.12.024

    Article  PubMed  Google Scholar 

  24. Danos P, Baumann B, Krämer A, Bernstein H-G, Stauch R, Krell D et al (2003) Volumes of association thalamic nuclei in schizophrenia: a postmortem study. Schizophr Res 60:141–155. doi:10.1016/S0920-9964(02)00307-9

    Article  PubMed  Google Scholar 

  25. Dehay C, Giroud P, Berland M, Killackey H, Kennedy H (1996) Contribution of thalamic input to the specification of cytoarchitectonic cortical fields in the primate: effects of bilateral enucleation in the fetal monkey on the boundaries, dimensions, and gyrification of striate and extrastriate cortex. J Comp Neurol 367:70–89. doi:10.1002/(SICI)1096-9861(19960325)367:1<70::AID-CNE6>3.0.CO;2-G

    Article  PubMed  CAS  Google Scholar 

  26. Desco M, Gispert JD, Reig S, Sanz J, Pascau J, Sarramea F et al (2003) Cerebral metabolic patterns in chronic and recent-onset schizophrenia. Psychiatry Res 122:125–135. doi:10.1016/S0925-4927(02)00124-5

    Article  PubMed  Google Scholar 

  27. Dorph-Petersen K-A, Nyengaard JR, Gundersen HJG (2001) Tissue shrinkage and unbiased stereological estimation of particle number and size. J Microsc 204:232–246. doi:10.1046/j.1365-2818.2001.00958.x

    Article  PubMed  CAS  Google Scholar 

  28. Dorph-Petersen K-A, Pierri JN, Perel JM, Sun Z, Sampson AR, Lewis DA (2005) The influence of chronic exposure to antipsychotic medications on brain size before and after tissue fixation: a comparison of haloperidol and olanzapine in macaque monkeys. Neuropsychopharmacology 30:1649–1661. doi:10.1038/sj.npp.1300710

    Article  PubMed  CAS  Google Scholar 

  29. Dorph-Petersen K-A, Pierri JN, Sun Z, Sampson AR, Lewis DA (2004) Stereological analysis of the mediodorsal thalamic nucleus in schizophrenia: volume, neuron number, and cell types. J Comp Neurol 472:449–462. doi:10.1002/cne.20055

    Article  PubMed  Google Scholar 

  30. Dorph-Petersen K-A, Pierri JN, Wu Q, Sampson AR, Lewis DA (2007) Primary visual cortex volume and total neuron number are reduced in schizophrenia. J Comp Neurol 501:290–301. doi:10.1002/cne.21243

    Article  PubMed  Google Scholar 

  31. Dorph-Petersen K-A, Rosenberg R, Nyengaard JR (2004) Estimation of number and volume of immunohistochemically stained neurons in complex brain regions. In: Evans SM, Janson AM, Nyengaard JR (eds) Quantitative methods in neuroscience. A neuroanatomical approach. Oxford University Press, Oxford, pp 216–238

    Google Scholar 

  32. Fowler IL, Carr VJ, Carter NT, Lewin TJ (1998) Patterns of current and lifetime substance use in schizophrenia. Schizophr Bull 24:443–455

    PubMed  CAS  Google Scholar 

  33. Fukuchi-Shimogori T, Grove EA (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294:1071–1074. doi:10.1126/science.1064252

    Article  PubMed  CAS  Google Scholar 

  34. Gardella D, Hatton WJ, Rind HB, Rosen GD, von Bartheld CS (2003) Differential tissue shrinkage and compression in the z-axis: implications for optical disector counting in vibratome-, plastic- and cryosections. J Neurosci Methods 124:45–59. doi:10.1016/S0165-0270(02)00363-1

    Article  PubMed  Google Scholar 

  35. Gilbert AR, Rosenberg DR, Harenski K, Spencer S, Sweeney JA, Keshavan MS (2001) Thalamic volumes in patients with first-episode schizophrenia. Am J Psychiatry 158:618–624. doi:10.1176/appi.ajp.158.4.618

    Article  PubMed  CAS  Google Scholar 

  36. Grieve KL, Acuña C, Cudeiro J (2000) The primate pulvinar nuclei: vision and action. Trends Neurosci 23:35–39. doi:10.1016/S0166-2236(99)01482-4

    Article  PubMed  CAS  Google Scholar 

  37. Gundersen HJG (1977) Notes on the estimation of the numerical density of arbitrary profiles: the edge effect. J Microsc 111:219–223

    Google Scholar 

  38. Gundersen HJG (1986) Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J Microsc 143:3–45

    PubMed  CAS  Google Scholar 

  39. Gundersen HJG, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263

    PubMed  CAS  Google Scholar 

  40. Gundersen HJG, Jensen EBV, Kiêu K, Nielsen J (1999) The efficiency of systematic sampling in stereology—reconsidered. J Microsc 193:199–211. doi:10.1046/j.1365-2818.1999.00457.x

    Article  PubMed  CAS  Google Scholar 

  41. Hendry SHC, Reid RC (2000) The koniocellular pathway in primate vision. Annu Rev Neurosci 23:127–153. doi:10.1146/annurev.neuro.23.1.127

    Article  PubMed  CAS  Google Scholar 

  42. Hickey TL, Guillery RW (1979) Variability of laminar patterns in the human lateral geniculate nucleus. J Comp Neurol 183:221–246. doi:10.1002/cne.901830202

    Article  PubMed  CAS  Google Scholar 

  43. Highley JR, Walker MA, Crow TJ, Esiri MM, Harrison PJ (2003) Low medial and lateral right pulvinar volumes in schizophrenia: a postmortem study. Am J Psychiatry 160:1177–1179. doi:10.1176/appi.ajp.160.6.1177

    Article  PubMed  Google Scholar 

  44. Hirai T, Jones EG (1989) A new parcellation of the human thalamus on the basis of histochemical staining. Brain Res Brain Res Rev 14:1–34. doi:10.1016/0165-0173(89)90007-6

    Article  PubMed  CAS  Google Scholar 

  45. Howard CV, Reed MG (1998) Unbiased stereology. Three-dimensional measurement in microscopy. Bios Scientific Publishers, Oxford

    Google Scholar 

  46. Jones EG (2007) The lateral geniculate nucleus. In: Jones EG (ed) The thalamus, 2nd edn. Cambridge University Press, Cambridge, pp 924–1008

    Google Scholar 

  47. Kemether EM, Buchsbaum MS, Byne W, Hazlett EA, Haznedar M, Brickman AM et al (2003) Magnetic resonance imaging of mediodorsal, pulvinar, and centromedian nuclei of the thalamus in patients with schizophrenia. Arch Gen Psychiatry 60:983–991. doi:10.1001/archpsyc.60.9.983

    Article  PubMed  Google Scholar 

  48. Kéri S, Kiss I, Kelemen O, Benedek G, Janka Z (2005) Anomalous visual experiences, negative symptoms, perceptual organization and the magnocellular pathway in schizophrenia: a shared construct? Psychol Med 35:1445–1455. doi:10.1017/S0033291705005398

    Article  PubMed  Google Scholar 

  49. Khan AA, Wadhwa S, Pandey RM, Bijlani V (1993) Prenatal human lateral geniculate nucleus: a quantitative light microscopic study. Dev Neurosci 15:403–409. doi:10.1159/000111364

    Article  PubMed  CAS  Google Scholar 

  50. Konopaske GT, Dorph-Petersen K-A, Pierri JN, Wu Q, Sampson AR, Lewis DA (2007) Effect of chronic exposure to antipsychotic medication on cell numbers in the parietal cortex of macaque monkeys. Neuropsychopharmacology 32:1216–1223. doi:10.1038/sj.npp.1301233

    Article  PubMed  CAS  Google Scholar 

  51. Konopaske GT, Dorph-Petersen K-A, Sweet RA, Pierri JN, Zhang W, Sampson AR et al (2008) Effect of chronic antipsychotic exposure on astrocyte and oligodendrocyte numbers in macaque monkeys. Biol Psychiatry 63:759–765. doi:10.1016/j.biopsych.2007.08.018

    Article  PubMed  CAS  Google Scholar 

  52. Kupfer C, Chumbley L, Downer J DE C (1967) Quantitative histology of optic nerve, optic tract and lateral geniculate nucleus of man. J Anat 101:393–401

    PubMed  CAS  Google Scholar 

  53. Laycock R, Crewther SG, Crewther DP (2007) A role for the ‘magnocellular advantage’ in visual impairments in neurodevelopmental and psychiatric disorders. Neurosci Biobehav Rev 31:363–376. doi:10.1016/j.neubiorev.2006.10.003

    Article  PubMed  CAS  Google Scholar 

  54. Lesch A, Bogerts B (1984) The diencephalon in schizophrenia: evidence for reduced thickness of the periventricular grey matter. Eur Arch Psychiatry Neurol Sci 234:212–219. doi:10.1007/BF00381351

    Article  PubMed  CAS  Google Scholar 

  55. Littell RC, Stroup WW, Freund RJ (2002) SAS for linear models. Wiley-SAS, Hoboken

    Google Scholar 

  56. Livingstone M, Hubel D (1988) Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240:740–749. doi:10.1126/science.3283936

    Article  PubMed  CAS  Google Scholar 

  57. Livingstone MS, Hubel DH (1987) Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci 7:3416–3468

    PubMed  CAS  Google Scholar 

  58. Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:414–417. doi:10.1016/0166-2236(83)90190-X

    Article  Google Scholar 

  59. Nielsen RD, Abitz M, Andersen BB, Pakkenberg B (2004) Neuron and glial cell numbers in subdivisions of the mediodorsal (MD) nucleus of the thalamus in schizophrenic subjects and controls. 2004 Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington, DC. Online. Program No. 110.7

  60. Pakkenberg B (1992) The volume of the mediodorsal thalamic nucleus in treated and untreated schizophrenics. Schizophr Res 7:95–100. doi:10.1016/0920-9964(92)90038-7

    Article  PubMed  CAS  Google Scholar 

  61. Ragsdale CW, Grove EA (2001) Patterning the mammalian cerebral cortex. Curr Opin Neurobiol 11:50–58. doi:10.1016/S0959-4388(00)00173-2

    Article  PubMed  CAS  Google Scholar 

  62. Rakic P (1988) Specification of cerebral cortical areas. Science 241:170–176. doi:10.1126/science.3291116

    Article  PubMed  CAS  Google Scholar 

  63. Schindler MK, Wang L, Selemon LD, Goldman-Rakic PS, Rakic P, Csernansky JG (2002) Abnormalities of thalamic volume and shape detected in fetally irradiated rhesus monkeys with high dimensional brain mapping. Biol Psychiatry 51:827–837. doi:10.1016/S0006-3223(01)01341-5

    Article  PubMed  Google Scholar 

  64. Selemon LD, Begović A (2007) Stereologic analysis of the lateral geniculate nucleus of the thalamus in normal and schizophrenic subjects. Psychiatry Res 151:1–10. doi:10.1016/j.psychres.2006.11.003

    Article  PubMed  CAS  Google Scholar 

  65. Selemon LD, Wang L, Nebel MB, Csernansky JG, Goldman-Rakic PS, Rakic P (2005) Direct and indirect effects of fetal irradiation on cortical gray and white matter volume in the macaque. Biol Psychiatry 57:83–90. doi:10.1016/j.biopsych.2004.10.014

    Article  PubMed  Google Scholar 

  66. Šestan N, Rakic P, Donoghue MJ (2001) Independent parcellation of the embryonic visual cortex and thalamus revealed by combinatorial Eph/ephrin gene expression. Curr Biol 11:39–43. doi:10.1016/S0960-9822(00)00043-9

    Article  PubMed  Google Scholar 

  67. Sharma J, Angelucci A, Sur M (2000) Induction of visual orientation modules in auditory cortex. Nature 404:841–847. doi:10.1038/35009043

    Article  PubMed  CAS  Google Scholar 

  68. Shimogori T, Grove EA (2005) Fibroblast growth factor 8 regulates neocortical guidance of area-specific thalamic innervation. J Neurosci 25:6550–6560. doi:10.1523/JNEUROSCI.0453-05.2005

    Article  PubMed  CAS  Google Scholar 

  69. Shipp S (2003) The functional logic of cortico-pulvinar connections. Philos Trans R Soc Lond B Biol Sci 358:1605–1624. doi:10.1098/rstb.2002.1213

    Article  PubMed  CAS  Google Scholar 

  70. Siris SG, Bench C (2003) Depression and schizophrenia. In: Hirsch SR, Weinberger DR (eds) schizophrenia. Blackwell Publishing, Oxford, pp 142–167

    Chapter  Google Scholar 

  71. Skottun BC, Skoyles JR (2008) A few remarks on attention and magnocellular deficits in schizophrenia. Neurosci Biobehav Rev 32:118–122. doi:10.1016/j.neubiorev.2007.06.002

    Article  PubMed  Google Scholar 

  72. Slaghuis WL (1998) Contrast sensitivity for stationary and drifting spatial frequency gratings in positive- and negative-symptom schizophrenia. J Abnorm Psychol 107:49–62. doi:10.1037/0021-843X.107.1.49

    Article  PubMed  CAS  Google Scholar 

  73. Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY et al (2004) Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry 56:640–650. doi:10.1016/j.biopsych.2004.08.022

    Article  PubMed  Google Scholar 

  74. Sullivan PR, Kuten J, Atkinson MS, Angevine JB Jr, Yakovlev PI (1958) Cell count in the lateral geniculate nucleus of man. Neurology 8:566–567

    PubMed  CAS  Google Scholar 

  75. Sur M, Angelucci A, Sharma J (1999) Rewiring cortex: the role of patterned activity in development and plasticity of neocortical circuits. J Neurobiol 41:33–43. doi:10.1002/(SICI)1097-4695(199910)41:1<33::AID-NEU6>3.0.CO;2-1

    Article  PubMed  CAS  Google Scholar 

  76. Sweet RA, Dorph-Petersen K-A, Lewis DA (2005) Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus. J Comp Neurol 491:270–289. doi:10.1002/cne.20702

    Article  PubMed  Google Scholar 

  77. Torrey EF, Webster M, Knable M, Johnston N, Yolken RH (2000) The stanley foundation brain collection and neuropathology consortium. Schizophr Res 44:151–155. doi:10.1016/S0920-9964(99)00192-9

    Article  PubMed  CAS  Google Scholar 

  78. Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MS, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 549–586

    Google Scholar 

  79. Van Essen DC, Gallant JL (1994) Neural mechanisms of form and motion processing in the primate visual system. Neuron 13:1–10. doi:10.1016/0896-6273(94)90455-3

    Article  PubMed  Google Scholar 

  80. von Melchner L, Pallas SL, Sur M (2000) Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature 404:871–876. doi:10.1038/35009102

    Article  CAS  Google Scholar 

  81. West MJ, Slomianka L, Gundersen HJG (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497. doi:10.1002/ar.1092310411

    Article  PubMed  CAS  Google Scholar 

  82. Young KA, Holcomb LA, Yazdani U, Hicks PB, German DC (2004) Elevated neuron number in the limbic thalamus in major depression. Am J Psychiatry 161:1270–1277. doi:10.1176/appi.ajp.161.7.1270

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ruth Henteleff, Dianne Cruz, and Mary Brady for excellent technical assistance, and Sue Johnston, Jenny Hwang, and the Clinical Services Core of the NIMH Conte Center for the Neuroscience of Mental Disorders for diagnostic assessments. Allan Sampson is a statistical consultant for Johnson & Johnson Pharmaceutical Research & Development LLC. David A. Lewis currently receives research support from the BMS Foundation, Merck and Pfizer and in 2006–2008 served as a consultant to Bristol-Meyer Squibb, Lilly, Merck, Neurogen, Pfizer, Hoffman-Roche, Sepracor and Wyeth. The project described was supported by Grants Numbers MH43784 and MH45156 from the National Institute of Mental Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Mental Health or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Anton Dorph-Petersen.

Additional information

The project described was supported by Grants Numbers MH43784 and MH45156 from the National Institute of Mental Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Mental Health or the National Institutes of Health.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorph-Petersen, KA., Caric, D., Saghafi, R. et al. Volume and neuron number of the lateral geniculate nucleus in schizophrenia and mood disorders. Acta Neuropathol 117, 369–384 (2009). https://doi.org/10.1007/s00401-008-0410-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-008-0410-2

Keywords

Navigation