Skip to main content

Advertisement

Log in

Cyclosporin A modulates cellular localization of MEF2C protein and blocks fiber hypertrophy in the overloaded soleus muscle of mice

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The molecular signaling pathway linked to hypertrophy of the anti-gravity/postural soleus muscle after mechanical overloading has not been identified. Using reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and immunohistochemical analyses, we investigated whether the amounts of myocyte enhancer factor (MEF)2C, MEF2D, and myogenin change in the mechanically overloaded soleus muscle after treatment with the calcineurin inhibitor cyclosporine A (CsA). Adult male ICR mice were subjected to a surgical ablation of the gastrocnemius muscle and treated with either CsA (25 mg/kg) or vehicle, once daily. They were killed at 2, 4, 7, 10, and 14 days post-injury. Mechanical overloading resulted in a significant increase in the wet weight and the cross-sectional area of slow and fast fibers of the soleus muscle in placebo-treated mice but not CsA-treated mice. RT-PCR analysis did not show a marked difference in MEF2C and MEF2D mRNA levels in the overloaded soleus muscle in placebo- or CsA-administered mice. After 2 days of mechanical overloading, we observed co-localization of MEF2C and myogenin in several mononuclear cells under both conditions. These MEF2C-positive mononuclear cells also possessed immunoreactivity for c-Met, a satellite cell marker. At 4 days, mechanical overloading induced marked expression of MEF2C but not MEF2D in the subsarcolemmal region in a group of myotubes and/or myofibers. Such a MEF2C-positive region emerged less often in the hypertrophied soleus muscle subjected to the treatment with CsA. At 7 days, we observed many mononuclear cells possessing both MEF2C and myogenin protein in mice treated with CsA, but not the placebo. Our results demonstrated that CsA treatment modulates the amount and cellular localization of MEF2C protein. The modulation of MEF2C by CsA treatment may inhibit the hypertrophic process in the soleus muscle after mechanical overloading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbott KL, Friday BB, Thaloor D, Murphy TJ, Pavlath GK (1998) Activation and cellular localization of the cyclosporine A-sensitive transcription factor NF-AT in skeletal muscle cells. Mol Biol Cell 9:2905–2916

    PubMed  CAS  Google Scholar 

  2. Black BL, Olson EN (1998) Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 14:167–196

    Article  PubMed  CAS  Google Scholar 

  3. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019

    Article  PubMed  CAS  Google Scholar 

  4. Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, Wu H, Zhu W, Bassel-Duby R, Williams RS (1998) A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 12:2499–2509

    Article  PubMed  CAS  Google Scholar 

  5. Coleman ME, DeMayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ (1995) Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem 270:12109–12116

    Article  PubMed  CAS  Google Scholar 

  6. Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927

    Article  PubMed  CAS  Google Scholar 

  7. Delling U, Tureckova J, Lim HW, De Windt LJ, Rotwein P, Molkentin JD (2000) A calcineurin-NFATc3-dependent pathway regulates skeletal muscle differentiation and slow myosin heavy-chain expression. Mol Cell Biol 20:6600–6611

    Article  PubMed  CAS  Google Scholar 

  8. DeVol DL, Rotwein P, Sadow JL, Novakofski J, Bechtel PJ (1990) Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am J Physiol 259:E89–E95

    PubMed  CAS  Google Scholar 

  9. Dunn SE, Burns JL, Michel RN (1999) Calcineurin is required for skeletal muscle hypertrophy. J Biol Chem 274:21908–21912

    Article  PubMed  CAS  Google Scholar 

  10. Dunn SE, Chin ER, Michel RN (2000) Matching of calcineurin activity to upstream effectors is critical for skeletal muscle fiber growth. J Cell Biol 151:663–672

    Article  PubMed  CAS  Google Scholar 

  11. Dunn SE, Simard AR, Bassel-Duby R, Williams RS, Michel RN (2001) Nerve activity-dependent modulation of calcineurin signaling in adult fast and slow skeletal muscle fibers. J Biol Chem 276:45243–45254

    Article  PubMed  CAS  Google Scholar 

  12. Florini JR, Ewton DZ, Coolican SA (1996) Growth hormone and the insulin-like growth factor system in myogenesis. Endocrinol Rev 17:481–517

    Article  CAS  Google Scholar 

  13. Friday BB, Horsley V, Pavlath GK (2000) Calcineurin activity is required for the initiation of skeletal muscle differentiation. J Cell Biol 149:657–665

    Article  PubMed  CAS  Google Scholar 

  14. Glass DJ (2003) Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol 5:87–90

    Article  PubMed  CAS  Google Scholar 

  15. Hinits Y, Hughes SM (2007) Mef2s are required for thick filament formation in nascent muscle fibres. Development 134:2511–2519

    Article  PubMed  CAS  Google Scholar 

  16. Kegley KM, Gephart J, Warren GL, Pavlath GK (2001) Altered primary myogenesis in NFATc3−/− mice leads to decreased muscle size in the adult. Dev Biol 232:115–126

    Article  PubMed  CAS  Google Scholar 

  17. Lai K-MV, Gonzalez M, Poueymirou WT, Kline WO, Na E, Zlotchenko E, Stitt TN, Economides AN, Yancopoulos GD, Glass DJ (2004) Conditional activation of akt in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol 24:9295–9304

    Article  PubMed  CAS  Google Scholar 

  18. Lazaro JB, Bailey PJ, Lassar AB (2002) Cyclin D-cdk4 activity modulates the subnuclear localization and interaction of MEF2 with SRC-family coactivators during skeletal muscle differentiation. Genes Dev 16:1792–1805

    Article  PubMed  CAS  Google Scholar 

  19. Michel RN, Dunn SE, Chin ER (2004) Calcineurin and skeletal muscle growth. Proc Nutr Soc 63:341–349

    Article  PubMed  CAS  Google Scholar 

  20. Molkentin JD, Firulli AB, Black BL, Martin JF, Hustad CM, Copeland N, Jenkins N, Lyons G, Olson EN (1996) MEF2B is a potent transactivator expressed in early myogenic lineages. Mol Cell Biol 16:3814–3824

    PubMed  CAS  Google Scholar 

  21. Mora S, Pessin JE (2000) The MEF2A isoform is required for striated muscle-specific expression of the insulin-responsive GLUT4 glucose transporter. J Biol Chem 275:16323–16328

    Article  PubMed  CAS  Google Scholar 

  22. Musaró A, McCullagh KJA, Naya FJ, Olson EN, Rosenthal N (1999) IGF-I induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 400:581–585

    Article  PubMed  Google Scholar 

  23. Musaró A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N (2001) Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27:195–200

    Article  PubMed  Google Scholar 

  24. Naya FJ, Mercer B, Shelton J, Richardson JA, Williams RS, Olson EN (2000) Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem 275:4545–4548

    Article  PubMed  CAS  Google Scholar 

  25. Oh M, Rybkin II, Copeland V, Czubryt MP, Shelton JM, Rooij EV, Richardson JA, Hill JA, De Windt LJ, Bassel-Duby R, Olson EN, Rothermel BA (2005) Calcineurin is necessary for the maintenance but not embryonic development of slow muscle fibers. Mol Cell Biol 25:6629–6638

    Article  PubMed  CAS  Google Scholar 

  26. Pallafacchina G, Calabria E, Serrano AL, Kalhovde JM, Schiaffino S (2002) A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc Natl Acad Sci USA 99:9213–9218

    Article  PubMed  CAS  Google Scholar 

  27. Parsons SA, Wilkins BJ, Bueno OF, Molkentin JD (2003) Altered skeletal muscle phenotypes in calcineurin Aalpha and Abeta gene-targeted mice. Mol Cell Biol 23:4331–4343

    Article  PubMed  CAS  Google Scholar 

  28. Potthoff MJ, Arnold MA, McAnally J, Richardson JA, Bassel-Duby R, Olson EN (2007) Regulation of skeletal muscle sarcomere integrity and postnatal muscle function by Mef2c. Mol Cell Biol 27:8143–8151

    Article  PubMed  CAS  Google Scholar 

  29. Potthoff MJ, Wu H, Arnold MA, Shelton JM, Backs J, McAnally J, Richardson JA, Bassel-Duby R, Olson EN (2007) Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J Clin Invest 117:2459–2467

    Article  PubMed  CAS  Google Scholar 

  30. Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3:1009–1013

    Article  PubMed  CAS  Google Scholar 

  31. Sakuma K, Watanabe K, Totsuka T, Uramoto I, Sakamoto K Sano M (1998) Differential adaptations of insulin-like growth factor, basic fibroblast growth factor and leukemia inhibitory factor in the plantaris muscle of rats by mechanical overloading: an immunohistochemical study. Acta Neuropath (Berl) 95:123–130

    Article  CAS  Google Scholar 

  32. Sakuma K, Nishikawa J, Nakao R, Watanabe K, Totsuka T, Nakano H, Sano M, Yasuhara M (2003) Calcineurin is a potent regulator for skeletal muscle regeneration by association with NFATc1 and GATA-2. Acta Neuropath (Berl) 105:271–280

    CAS  Google Scholar 

  33. Sakuma K, Nakao R, Aoi W, Inashima S, Fujikawa T, Hirata M, Sano M, Yasuhara M (2005) Cyclosporin A treatment upregulates Id1 and Smad3 expression and delays skeletal muscle regeneration. Acta Neuropath (Berl) 110:269–280

    Article  CAS  Google Scholar 

  34. Sakuma K, Nakao R, Yamasa Y, Yasuhara M (2006) Normal distribution of presenilin-1 and nicastrin in skeletal muscle and the differential responses of these proteins after denervation. Biochim Biophys Acta Gen Subj 1760:980–987

    Article  CAS  Google Scholar 

  35. Stupka N, Plant DR, Schertzer JD, Emerson TM, Bassel-Duby R, Olson EN, Lynch GS (2006) Activated calcineurin ameliorates contraction-induced injury to skeletal muscles of mdx dystrophic mice. J Physiol 575:645–656

    Article  PubMed  CAS  Google Scholar 

  36. Talmadge RJ, Otis JS, Rittler MR, Garcia ND, Spencer SR, Lees SJ, Naya FJ (2004) Calcineurin activation influences muscle phenotype in a muscle-specific fashion. BMC Cell Biol 5:28

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a research Grant-in-Aid for Young Scientists B (No. 17700500) from the Ministry of Education, Science, Sports and Culture of Japan, and by the grant for young researcher’s project of Research Center for Future Technology, Toyohashi University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihiro Sakuma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakuma, K., Akiho, M., Nakashima, H. et al. Cyclosporin A modulates cellular localization of MEF2C protein and blocks fiber hypertrophy in the overloaded soleus muscle of mice. Acta Neuropathol 115, 663–674 (2008). https://doi.org/10.1007/s00401-008-0371-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-008-0371-5

Keywords

Navigation