Skip to main content
Log in

Long-term alterations in μ, δ and κ opioidergic receptors following middle cerebral artery occlusion in mice

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Alterations in the opioidergic system may play a role in the molecular mechanisms underlying neurochemical responses to cerebral ischaemia. The present study aimed to determine the delayed expression of μ, δ and κ opioid receptors, following 1, 2, 7, and 30 days of middle cerebral artery occlusion (MCAO) in mice. Using quantitative autoradiography, we highlighted significant decreases in μ, δ and κ opioid receptor expression in ipsilateral cortices from day 1 post-MCAO. Moreover, in contralateral nucleus lateralis thalami pars posterior, ipsi- and contralateral nucleus medialis dorsalis thalami, and ipsilateral substantia nigra, pars reticulata (SNr), κ receptors were increased; μ receptor densities were decreased in nucleus ventralis thalami, pars posterior (VThP), and SNr. δ-Binding sites were increased in the striatum on day 30 post-MCAO. The alterations in opioid receptors in cortical infarcts were correlated with strong histological damage. Further reductions in opioid receptor densities in cortical infarcts were observed at later time points. In subcortical brain regions, opioid receptor densities were also altered but no histological damage was seen, except in the VThP, in which cell density was increased on day 30. Delayed reductions in opioid receptor densities in the infarct appeared as the continuation of the early processes previously demonstrated. However, changes in subcortical opioid receptor expression may correlate with neuronal alterations in remote brain regions. Changes in opioidergic receptor expression in these regions may be involved in the long-term consequences of stroke and could be used as biomarker of neuronal alteration through the use of imaging techniques in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Araki T, Murakami F, Kanai Y, Kato H, Kogure K (1993) Naloxone receptor binding in gerbil striatum and hippocampus following transient cerebral ischemia. Neurochem Int 23:319–325

    Article  PubMed  CAS  Google Scholar 

  2. Arvidsson U, Dado RJ, Riedl M, Lee J-H, Law PY, Loh HH, Elde R, Wessendorf MW (1995) δ-Opioid receptor immunoreactivity: distribution in brainstem and spinal cord, and relationship to biogenic amines and enkephalin. J Neurosci 15:1215–1235

    PubMed  CAS  Google Scholar 

  3. Arvidsson U, Riedl M, Chakrabarti S, Lee J-H, Nakano AH, Dado RJ, Loh HH, Law P-Y, Wessendorf MW, Elde R (1995) Distribution and targeting of a μ-opioid receptor (MOR1) in brain and spinal cord. J Neurosci 15:3328–3341

    PubMed  CAS  Google Scholar 

  4. Arvidsson U, Riedl M, Chakrabarti S, Vulchanova L, Lee J-H, Nakano AH, Lin X, Loh HH, Law P-Y, Wessendorf MW, Elde R (1995) The κ-opioid receptor is primarily postsynaptic: combined immunohistochemical localization of the receptor and endogenous opioids. Proc Natl Acad Sci USA 92:5062–5066

    Article  PubMed  CAS  Google Scholar 

  5. Bemana I, Nagao S (1998) Effects of niravoline (RU 51599), a selective kappa-opioid receptor agonist on intracranial pressure in gradually expanding extradural mass lesion. J Neurotrauma 15:117–124

    Article  PubMed  CAS  Google Scholar 

  6. Benfenati F, Pich EM, Zoli M, Grimaldi R, Fuxe K, Agnati LF (1991) Changes in striatal μ and δ(opioid receptors after transient forebrain ischemia: a quantitative autoradiographic study. Brain Res 546:171–175

    Article  PubMed  CAS  Google Scholar 

  7. Birch PJ, Rogers H, Hayes AG, Hayward NJ, Tyers MB, Scopes DC, Naylor A, Judd DB (1991) Neuroprotective actions of GR89696, a highly potent and selective κ-opioid receptor agonist. Br J Pharmac 103:1919–1823

    Google Scholar 

  8. Bouet V, Freret T, Toutain J, Divoux D, Boulouard M, Schumann-Bard P (2006) Sensorimotor and cognitive deficits after transient middle cerebral artery occlusion in the mouse. Exp Neurol 203(2):555–567

    Article  PubMed  Google Scholar 

  9. Boutin H, Dauphin F, Jauzac Ph, MacKenzie ET (2000) Exofocal alterations in opioidergic receptor densities following focal cerebral ischaemia in mice. Exp Neurol 164:314–321

    Article  PubMed  CAS  Google Scholar 

  10. Boutin H, Dauphin F, MacKenzie ET, Jauzac Ph (1999) Differential time-course decreases in non-selective, mu, delta and kappa opioid receptors following focal cerebral ischemia in mice. Stroke 30:1271–1278

    PubMed  CAS  Google Scholar 

  11. Boutin H, Dauphin F, MacKenzie ET, Jauzac Ph (1996) Cortical and subcortical alterations of the opioidergic system in response to cerebral ischaemia. In: Krieglstein J, Oberpichler-Schwenk H, Wissenschaftliche Verlagsgesellschaft (eds) Pharmacology of cerebral ischemia. Medpharm Scientific Publishers Stuttgart, Stuttgart, pp 601–617

    Google Scholar 

  12. Boutin H, Jauzac P, MacKenzie ET, Dauphin F (2003) Potential use of early alterations in mu and delta opioid receptors as a predictive index for delayed brain ischemic damage. Neurobiol Dis 13:63–73

    Article  PubMed  CAS  Google Scholar 

  13. Boutin H, Jauzac Ph, MacKenzie ET, Dauphin F (1998) Maximal densities of μ, δ(and κ(receptors are differentially altered by focal cerebral ischaemia in the mouse. Brain Res 787:237–241

    Article  PubMed  CAS  Google Scholar 

  14. Chen TY, Goyagi T, Toung TJ, Kirsch JR, Hurn PD, Koehler RC, Bhardwaj A (2004) Prolonged opportunity for ischemic neuroprotection with selective kappa-opioid receptor agonist in rats. Stroke 35:1180–1185

    Article  PubMed  CAS  Google Scholar 

  15. Commons KG, Milner TA (1996) Cellular and subcellular localization of δ(opioid receptor immunoreactivity in the rat dentate gyrus. Brain Res 738:181–195

    Article  PubMed  CAS  Google Scholar 

  16. Commons KG, Milner TA (1997) Localization of delta opioid receptor immunoreactivity in interneurons and pyramidal cells in the rat hippocampus. J Comp Neurol 381:373–387

    Article  PubMed  CAS  Google Scholar 

  17. Dawson VL, Hsu CY, Liu TH, Dawson TM, Wamsley JK (1994) Receptor alterations in subcortical structures after bilateral middle cerebral artery infarction of the cerebral cortex. Exp Neurol 128:88–96

    Article  PubMed  CAS  Google Scholar 

  18. De Bilbao F, Guarin E, Nef P, Vallet P, Giannakopoulos P, Dubois-Dauphin M (2000) Cell death is prevented in thalamic fields but not in injured neocortical areas after permanent focal ischaemia in mice overexpressing the anti-apoptotic protein Bcl-2. Eur J Neurosci 12:921–934

    Article  PubMed  Google Scholar 

  19. Drake CT, Patterson TA, Simmons MI, Chavkin C, Milner TA (1996) Kappa Opioid receptor-like immunoreactivity in guinea pig brain: ultrastructural localization in presynaptic terminals in hippocampal formation. J Comp Neurol 370:377–395

    Article  PubMed  CAS  Google Scholar 

  20. Fernandez A, de Ceballos ML, Jenner P, Marsden CD (1994) Neurotensin, substance P, delta and mu opioid receptors are decreased in basal ganglia of Parkinson’s disease patients. Neuroscience 61:73–79

    Article  PubMed  CAS  Google Scholar 

  21. Fried RL, Nowak TSJ (1987) Opioid peptide levels in gerbil brain after transient ischemia: lasting depletion of hippocampal dynorphin. Stroke 18:765–770

    PubMed  CAS  Google Scholar 

  22. Fujie W, Kirino T, Tomukai N, Iwasawa T, Tamura A (1990) Progressive shrinkage of the thalamus following middle cerebral artery occlusion in rats. Stroke 21:1485–1488

    PubMed  CAS  Google Scholar 

  23. Galynker I, Schlyer DJ, Dewey SL, Fowler JS, Logan J, Gatley SJ, MacGregor RR, Ferrieri RA, Holland MJ, Brodie J, Simon E, Wolf AP (1996) Opioid receptor imaging and displacement studies with [6-O-[11C]methyl]Buprenorphine in baboon brain. Nucl Med Biol 23:325–331

    Article  PubMed  CAS  Google Scholar 

  24. Gerfen CR, Wilson CJ (1996) Basal ganglia. In: Swanson LW, Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy. Elsevier Science, Amsterdam, pp 371–468

    Google Scholar 

  25. Gracy KN, Svingos AL, Pickel VM (1997) Dual ultrastructural localization of μ-opioid receptors and NMDA-type glutamate receptors in the shell of the rat nucleus accumbens. J Neurosci 17:4839–4848

    PubMed  CAS  Google Scholar 

  26. Guéniau C, Oberlander C (1997) The kappa opioid agonist niravoline decreases brain edema in the mouse middle cerebral artery occlusion model of stroke. J Pharmacol Exp Ther 282:1–6

    PubMed  Google Scholar 

  27. Hansson P (2004) Post-stroke pain case study: clinical characteristics, therapeutic options and long-term follow-up. Eur J Neurol 11 (Suppl 1):22–30:22–30

    PubMed  Google Scholar 

  28. Hara H, Ayata G, Huang PL, Moskowitz MA (1997) Alteration of protein kinase C activity after transient focal cerebral ischemia in mice using in vitro [3H]phorbol-12,13-dibutyrate binding autoradiography. Brain Res 774:69–76

    Article  PubMed  CAS  Google Scholar 

  29. Heiss WD, Herholz K (2006) Brain receptor imaging. J Nucl Med 47:302–312

    PubMed  CAS  Google Scholar 

  30. Iizuka H, Sakatani K, Young W (1990) Neural damage in the rat thalamus after cortical infarcts. Stroke 21:790–794

    PubMed  CAS  Google Scholar 

  31. Ikeda M, Mackay KB, Dewar D, McCulloch J (1993) Differential alterations in adenosine A1 and kappa 1 opioid receptors in the striatum in Alzheimer’s disease. Brain Res 616:211–217

    Article  PubMed  CAS  Google Scholar 

  32. Itoh J, Ukai M, Kameyama T (1993) Dynorphin A-(1–13) potently prevents memory dysfunctions induced by transient cerebral ischemia. Eur J Pharmacol 234:9–15

    Article  PubMed  CAS  Google Scholar 

  33. Itoh J, Ukai M, Kameyama T (1993) U-50488H, a Kappa-opioid receptor agonist, markedly prevents memory dysfunctions induced by transient cerebral ischemia in mice. Brain Res 619:223–228

    Article  PubMed  CAS  Google Scholar 

  34. Jones AK, Watabe H, Cunningham VJ, Jones T (2004) Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C]diprenorphine binding and PET. Eur J Pain 8:479–485

    Article  PubMed  CAS  Google Scholar 

  35. Jones EG (ed) (1985) The thalamus. Plenum Press, New York

  36. Kling MA, Carson RE, Borg L, Zametkin A, Matochik JA, Schluger J, Herscovitch P, Rice KC, Ho A, Eckelman WC, Kreek MJ (2000) Opioid receptor imaging with positron emission tomography and [18F]cyclofoxy in long-term, methadone-treated former heroin addicts. J Pharmacol Exp Ther 295:1070–1076

    PubMed  CAS  Google Scholar 

  37. Lehman A (ed) (1974) Atlas stéréotaxique du cerveau de la souris. CNRS, Paris

  38. Loos M, Dihne M, Block F (2003) Tumor necrosis factor-alpha expression in areas of remote degeneration following middle cerebral artery occlusion of the rat. Neuroscience 122:373–380

    Article  PubMed  CAS  Google Scholar 

  39. Mackay KB, Kusumoto K, Graham DI, McCulloch J (1993) Focal cerebral ischemia in the cat: pretreatement with a Kappa-1 opioid receptor agonist, CI-977. Brain Res 618:213–219

    Article  PubMed  CAS  Google Scholar 

  40. Mackay KB, Patel TR, Galbraith SL, Woodruff GN, McCulloch J (1996) The relationship between glutamate release and cerebral blood flow after focal cerebral ischaemia in the cat: effect of pretreatment with enadoline (a kappa receptor agonist). Brain Res 712:329–334

    Article  PubMed  CAS  Google Scholar 

  41. Madar I, Lever JR, Kinter CM, Scheffel U, Ravert HT, Musachio JI, Mathews WB, Dannals RF, Frost JJ (1996) Imaging of δ(opioid receptors in human brain by N1’-([11C]methyl)naltrindole and PET. Synapse 24:19–28

    Article  PubMed  CAS  Google Scholar 

  42. McLean S, Rothman RB, Herckenham M (1986) Autoradiographic localization of Mu and Delta opiate receptors in the forebrain of the rat. Brain Res 378:49–60

    Article  PubMed  CAS  Google Scholar 

  43. Miller L, Perry DC (1989) Opiate receptor subtype binding in gerbil hippocampus is altered by forebrain ischemia. Brain Res 495:367–372

    Article  PubMed  CAS  Google Scholar 

  44. Nagasawa H, Araki T, Kogure K (1994) Autoradiographic analysis of second-messenger and neurotransmitter receptor systems in the exo-focal remote areas of postischemic rat brain. Brain Res Bull 35:347–352

    Article  PubMed  CAS  Google Scholar 

  45. Nakane M, Teraoka A, Asato R, Tamura A (1992) Degeneration of the ipsilateral substantia nigra following cerebral infarction in the striatum. Stroke 23:328–332

    PubMed  CAS  Google Scholar 

  46. Nordborg C, Johansson BB (1996) Secondary thalamic lesions after ligation of the middle cerebral artery: an ultrastructural study. Acta Neuropathol (Berl) 91:61–66

    Article  CAS  Google Scholar 

  47. Robinson RG (1997) Neuropsychiatric consequences of stroke. Annu Rev Med 48:217–229

    Article  PubMed  CAS  Google Scholar 

  48. Rupalla K, Wiessner C, Allegrini P, Sauer D (1997) Characterization of immediate and delayed microglia activation and DNA fragmentation in different brain regions following permanent focal cerebral ischemia in mice. J Cereb Blood Flow Metab 17:S255

    Google Scholar 

  49. Saji H, Tsutsumi D, Magata Y, Iida Y, Konishi J, Yokoyama A (1992) Preparation and biodistribution in mice of [11C]carfentanil: a radiopharmaceutical for studying brain mu-opioid receptors by positron emission tomography. Ann Nucl Med 6:63–67

    Article  PubMed  CAS  Google Scholar 

  50. Scavini C, Rozza A, Bo P, Lanza E, Favalli L, Savoldi F, Racagni G (1990) κ-Opioid receptor changes and neurophysiological alterations during cerebral ischemia in rabbits. Stroke 21:943–947

    PubMed  CAS  Google Scholar 

  51. Simmons ML, Terman GW, Drake CT, Chavkin C (1994) Inhibition of glutamate release by presynaptic κ1-opioid receptors in the guinea pig dentate gyrus. J Neurophysiol 72:1697–1705

    PubMed  CAS  Google Scholar 

  52. Smith JS, Zubieta JK, Price JC, Flesher JE, Madar I, Lever JR, Kinter CM, Dannals RF, Frost JJ (1999) Quantification of delta-opioid receptors in human brain with N1’-([11C]methyl) naltrindole and positron emission tomography. J Cereb Blood Flow Metab 19:956–966

    Article  PubMed  CAS  Google Scholar 

  53. Sopala M, Frankiewicz T, Parsons C, Danysz W (2000) Middle cerebral artery occlusion produces secondary, remote impairment in hippocampal plasticity of rats—involvement of N-methyl-d-aspartate receptors? Neurosci Lett 281:143–146

    Article  PubMed  CAS  Google Scholar 

  54. Soriano MA, Ferrer I, Rodriguez-Farré E, Planas AM (1996) Apoptosis and c-Jun in the thalamus of the rat following cortical infarction. NeuroReport 7:425–428

    Article  PubMed  CAS  Google Scholar 

  55. Stumm R, Ruthrich H, Schulz S, Zhou C, Hollt V (2005) Expression of the mu-opioid receptor is induced in dentate gyrus granule cells after focal cerebrocortical ischaemia and stimulation of entorhinal afferents. Eur J Neurosci 22:1032–1044

    Article  PubMed  Google Scholar 

  56. Svingos AL, Cheng PY, Clarke CL, Pickel VM (1995) Ultrastructural localization of δ-opioid receptor and Met-enkephalin immunoreactivity in rat insular cortex. Brain Res 700:25–39

    Article  PubMed  CAS  Google Scholar 

  57. Svingos AL, Moriwaki A, Wang JB, Uhl GR, Pickel VM (1997) μ-Opioid receptors are localized to extrasynaptic plasma membranes of GABAergic neurons and their targets in the rat nucleus accumbens. J Neurosci 17:2585–2594

    PubMed  CAS  Google Scholar 

  58. Svingos AL, Moriwaki A, Wang JB, Uhl GR, Pickel VM (1996) Ultrastructural immunocytochemical localization of μ-opioid receptors in rat nucleus accumbens: extrasynaptic plasmalemmal distribution and association with Leu-enkephalin. J Neurosci 16:4162–4173

    PubMed  CAS  Google Scholar 

  59. Tamura A, Tahira Y, Nagashima H, Kirino T, Gotoh O, Hojo S, Sano K (1991) Thalamic atrophy following cerebral infarction in the territory of the middle cerebral artery. Stroke 22:615–618

    PubMed  CAS  Google Scholar 

  60. Ting P, Xu S, Krumins S (1994) Endogenous opioid system activity following temporary focal cerebral ischemia. Acta Neurochir 60(Suppl):253–256

    CAS  Google Scholar 

  61. Tyacke RJ, Robinson ES, Schnabel R, Lewis JW, Husbands SM, Nutt DJ, Hudson AL (2002) N1’-fluoroethyl-naltrindole (BU97001) and N1’-fluoroethyl-(14-formylamino)-naltrindole (BU97018) potential delta-opioid receptor PET ligands. Nucl Med Biol 29:455–462

    Article  PubMed  CAS  Google Scholar 

  62. VanBockstaele EJ, Commons K, Pickel VM (1997) Delta-opioid receptor is present in presynaptic axon terminals in the rat nucleus locus coeruleus: relationships with methionine(5)-enkephalin. J Comp Neurol 575–586:388

    Google Scholar 

  63. Wagner JJ, Caudle RM, Chavkin C (1992) κ-Opioids decrease excitatory transmission in the dentate gyrus of the guinea pig hippocampus. J Neurosci 12:132–141

    PubMed  CAS  Google Scholar 

  64. Waksman G, Hamel E, Delay-Goyet P, Roques BP (1987) Neutral endopeptidase-24.11, μ and δ opioid receptors after selective brain lesions: an autoradiographic study. Brain Res 436:205–216

    Article  PubMed  CAS  Google Scholar 

  65. Watanabe H, Kumon Y, Ohta S, Sakaki S, Matsuda S, Sakanaka M (1998) Changes in protein synthesis and calcium homeostasis in the thalamus of spontaneously hypertensive rats with focal cerebral ischemia. J Cereb Blood Flow Metab 18:686–696

    Article  PubMed  CAS  Google Scholar 

  66. Weeks RA, Cunningham VJ, Piccini P, Waters S, Harding AE, Brooks DJ (1997) 11C-diprenorphine binding in Huntington’s disease: a comparison of region of interest analysis with statistical parametric mapping. J Cereb Blood Flow Metab 17:943–949

    Article  PubMed  CAS  Google Scholar 

  67. Welsh FA, Sakamoto T, McKee AE, Sims RE (1987) Effect of lactacidosis on pyridine nucleotide stability during ischemia in mouse brain. J Neurochem 49:846–851

    Article  PubMed  CAS  Google Scholar 

  68. Wevers A, Schmidt P, Cserpan E, cserpan I, Maderspach K, Staak M, Schröder H (1995) Cellular distribution of the mRNA for the κ-opioid receptor in the human neocortex: a non-isotopic in situ hybridization study. Neurosci Lett 195:125–128

    Article  PubMed  CAS  Google Scholar 

  69. Zhang Z, Chen TY, Kirsch JR, Toung TJ, Traystman RJ, Koehler RC, Hurn PD, Bhardwaj A (2003) Kappa-opioid receptor selectivity for ischemic neuroprotection with BRL 52537 in rats. Anesth Analg 97:1776–1783

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the University of Caen, the CNRS and the “Fondation pour la Recherche Médicale”. The authors wish to thank Didier DIVOUX, and Drs. Hélène NALLET, Michel BOULOUARD, Simon ROUSSEL, Omar TOUZANI, Antonio RUOCCO and Alan R. YOUNG for their contribution to the blind analysis of histological damage and Florence MEZENGE and Nicole JACQUES for their kind technical help. The authors wish to thank Drs Alan R. YOUNG, Barry McCOLL and Peter THORNTON for their help in the review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Boutin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boutin, H., Catherine, A., MacKenzie, E.T. et al. Long-term alterations in μ, δ and κ opioidergic receptors following middle cerebral artery occlusion in mice. Acta Neuropathol 114, 491–500 (2007). https://doi.org/10.1007/s00401-007-0269-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-007-0269-7

Keywords

Navigation