Skip to main content
Log in

On the variety of cell death pathways in the Lurcher mutant mouse

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Apoptosis as well as autophagy have been implicated in the death of cerebellar Purkinje cells (PCs) in the Lurcher (Lc/+) mutant mouse and at least two different apoptotic pathways participate in the transsynaptic death of granule cells (GC) and inferior olivary (IO) neurones. The relative contribution of these pathways can only be assessed from their momentary involvement at any stage of the complete course of neurodegeneration. Here we used quantitative labelling for activated caspase-3 (Casp-3) and Fluoro-Jade B (FJ-B) to investigate the spatio-temporal pattern of neuronal death from P6 to P67 in Lc/+ mutants. Activated Casp-3 was present only in narrow time intervals (P14 to P22 in PCs; P14 to P28 in GCs) and in small subpopulations of PCs, GCs, and IO neurones. FJ-B positive PCs were detected during a broader period (P14 to P28), and outnumbered Casp-3 labelled PCs by a factor exceeding eight. Nevertheless, FJ-B labelling was restricted to PCs and never found in either GC or IO neurones. In conclusion, we present the first complete time course and extent of Casp-3 activation in Lc/+ mutants and show that the majority of dying neurones in Lc/+ mutants undergo Casp-3 independent cell death. The cellular overload produced by the initial gene defect in Lc/+ mutants apparently activates a variety of apoptotic and non-apoptotic pathways within the same neuronal population. Moreover, we present the first evidence for the ability of FJ-B to selectively label a discrete population of dying PCs, implying a higher selectivity of FJ-B than previously supposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

Calb:

CalbindinD-28k

Casp-3:

Caspase-3

FITC:

Fluorescein isothiocyanate

FJ:

Fluoro-Jade

GC:

Granule cell

GluRδ2:

Glutamate receptor delta 2

GRID2:

Glutamate receptor ionotrophic delta 2 gene

IO:

Inferior olive

Lc/+:

Lurcher mutant

P:

Postnatal day

PAP:

Peroxidase-antiperoxidase

PBS:

Phosphate-buffered saline

PC:

Purkinje cell

PCR:

Polymerase chain reaction

TBS:

Tris-buffered saline

References

  1. Anderson KJ, Fugaccia I, Scheff SW (2003) Fluoro-jade B stains quiescent and reactive astrocytes in the rodent spinal cord. J Neurotrauma 20:1223–1231

    Article  PubMed  Google Scholar 

  2. Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6:505–510

    Article  PubMed  CAS  Google Scholar 

  3. Batini C (1990) Cerebellar localization and colocalization of GABA and calcium binding protein-D28K. Arch Ital Biol 128:127–149

    PubMed  CAS  Google Scholar 

  4. Bäurle J, Vogten H, Grüsser-Cornehls U (1998) Course and targets of the calbindin D-28k subpopulation of primary vestibular afferents. J Comp Neurol 402:111–128

    Article  PubMed  Google Scholar 

  5. Blum D, Hemming FJ, Galas MC,Torch S, Cuvelier L, Schiffmann SN, Sadoul R. (2004) Increased Alix (apoptosis-linked gene-2 interacting protein X) immunoreactivity in the degenerating striatum of rats chronically treated by 3-nitropropionic acid. Neurosci Lett 368:309–313

    Article  PubMed  CAS  Google Scholar 

  6. Caddy KW, Biscoe TJ (1979) Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Philos Trans R Soc Lond B Biol Sci 287:167–201

    PubMed  CAS  Google Scholar 

  7. Celio MR, Baier W, Schärer L, Gregersen HJ, de Viragh PA, Norman AW (1990) Monoclonal antibodies directed against the calcium binding protein Calbindin D-28k. Cell Calcium 11:599–602

    Article  PubMed  CAS  Google Scholar 

  8. Choi DW (1995) Calcium: still center-stage in hypoxic-ischemic neuronal cell death. Trends Neurosci 18:58–60

    Article  PubMed  CAS  Google Scholar 

  9. Chu T, Hullinger H, Schilling K, Oberdick J (2000) Spatial and temporal changes in natural and target deprivation-induced cell death in the mouse inferior olive. J Neurobiol 43:18–30

    Article  PubMed  CAS  Google Scholar 

  10. Citron BA, Arnold PM, Sebastian C, Qin F, Malladi S, Ameenuddin S, Landis ME, Festoff BW (2000) Rapid upregulation of caspase-3 in rat spinal cord after injury: mRNA, protein, and cellular localization correlates with apoptotic cell death. Exp Neurol 166:213–226

    Article  PubMed  CAS  Google Scholar 

  11. Doughty ML, De Jager PL, Korsmeyer SJ, Heintz N (2000) Neurodegeneration in Lurcher mice occurs via multiple cell death pathways. J Neurosci 20:3687–3694

    PubMed  CAS  Google Scholar 

  12. Dumesnil-Bousez N, Sotelo C (1992) Early development of the Lurcher cerebellum: Purkinje cell alterations and impairment of synaptogenesis. J Neurocytol 21:506–529

    Article  PubMed  CAS  Google Scholar 

  13. Eisch AJ, Schmued LC, Marshall JF (1998) Characterizing cortical neuron injury with Fluoro-Jade labeling after a neurotoxic regimen of methamphetamine. Synapse 30:329–333

    Article  PubMed  CAS  Google Scholar 

  14. Eyüpoglu IY, Savaskan NE, Brauer AU, Nitsch R, Heimrich B (2003) Identification of neuronal cell death in a model of degeneration in the hippocampus. Brain Res Protoc 11:1–8

    Article  Google Scholar 

  15. Frank TC, Nunley MC, Sons HD, Ramon R, Abbott LC (2003) Fluoro-jade identification of cerebellar granule cell and Purkinje cell death in the alpha1A calcium ion channel mutant mouse, leaner. Neuroscience 118:667–680

    Article  PubMed  CAS  Google Scholar 

  16. Freyaldenhoven TE, Ali SF, Schmued LC (1997) Systemic administration of MPTP induces thalamic neuronal degeneration in mice. Brain Res 759:9–17

    Article  PubMed  CAS  Google Scholar 

  17. Garcia-Segura LM, Baetens D, Roth J, Norman AW, Orci L (1984) Immunohistochemical mapping of calcium-binding protein immunoreactivity in the rat central nervous system. Brain Res 296:75–86

    Article  PubMed  CAS  Google Scholar 

  18. Garin N, Hornung JP, Escher G (2002) Distribution of postsynaptic GABA(A) receptor aggregates in the deep cerebellar nuclei of normal and mutant mice. J Comp Neurol 447:210–217

    Article  PubMed  CAS  Google Scholar 

  19. Harkany T, Grosche J, Mulder J, Horvath KM, Keijser J, Hortobagyi T, Luiten PG, Hartig W (2001) Short-term consequences of N-methyl-D-aspartate excitotoxicity in rat magnocellular nucleus basalis: effects on in vivo labelling of cholinergic neurons. Neuroscience 108:611–627

    Article  PubMed  CAS  Google Scholar 

  20. Heckroth JA, Eisenman LM (1991) Olivary morphology and olivocerebellar topography in adult Lurcher mutant mice. J Comp Neurol 312:641–651

    Article  PubMed  CAS  Google Scholar 

  21. Hollman M, Heinemann S (1994) Cloned Glutamate Receptors. Annu Rev Neurosci 17:31–103

    Article  Google Scholar 

  22. Hopkins KJ, Wang G, Schmued LC (2000) Temporal progression of kainic acid induced neuronal and myelin degeneration in the rat forebrain. Brain Res 864:69–80

    Article  PubMed  CAS  Google Scholar 

  23. Hu B, Zheng F (2005) Differential effects on current kinetics by point mutations in the lurcher motif of NR1/NR2A receptors. J Pharmacol Exp Ther 312:899–904

    Article  PubMed  CAS  Google Scholar 

  24. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  25. Kim HT, Waters K, Stoica G, Qiang W, Liu N, Scofield VL, Wong PK (2004) Activation of endoplasmic reticulum stress signaling pathway is associated with neuronal degeneration in MoMuLV-ts1-induced spongiform encephalomyelopathy. Lab Invest 84:816–827

    Article  PubMed  CAS  Google Scholar 

  26. Kokaia Z, Andsberg G, Yan Q, Lindvall O (1998) Rapid alterations of BDNF protein levels in the rat brain after focal ischemia: evidence for increased synthesis and anterograde axonal transport. Exp Neurol 154:289–301

    Article  PubMed  CAS  Google Scholar 

  27. Kretsinger RH (1980) Crystallographic studies of calmodulin and homologs. Ann NY Acad Sci 356:14–19

    PubMed  CAS  Google Scholar 

  28. Krinke GJ, Classen W, Vidotto N, Suter E, Würmlin Ch (2001) Detecting necrotic neurons with fluoro-jade stain. Exp Toxic Pathol 53:365–372

    Article  CAS  Google Scholar 

  29. Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372

    Article  PubMed  CAS  Google Scholar 

  30. Larsson E, Lindvall O, Kokaia Z (2001) Stereological assessment of vulnerability of immunocytochemically identified striatal and hippocampal neurons after global cerebral ischemia in rats. Brain Res 913:117–132

    Article  PubMed  CAS  Google Scholar 

  31. Legrand C, Thomasset M, Parkes CO, Clavel MC, Rabie A (1983) Calcium-binding protein in the developing rat cerebellum. An immunocytochemical study. Cell Tissue Res 233:389–402

    Article  PubMed  CAS  Google Scholar 

  32. Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, Herman B, Levine B (1998) Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 72:8586–8596

    PubMed  CAS  Google Scholar 

  33. Liu HN, Giasson BI, Mushynski WE, Almazan G (2002) AMPA receptor-mediated toxicity in oligodendrocyte progenitors involves free radical generation and activation of JNK, calpain and caspase 3. J Neurochem 82:398–409

    Article  PubMed  CAS  Google Scholar 

  34. LoPachin RM, Balaban CD, Ross JF (2003) Acrylamide axonopathy revisited. Toxicol Appl Pharmacol 188:135–153

    Article  PubMed  CAS  Google Scholar 

  35. Lossi L, Cantile C, Tamagno I, Merighi A (2005) Apoptosis in the mammalian CNS: Lessons from animal models. Vet J 170:52–66

    Article  PubMed  CAS  Google Scholar 

  36. Lossi L, Merighi A (2003) In vivo cellular and molecular mechanisms of neuronal apoptosis in the mammalian CNS. Prog Neurobiol 69:287–312

    Article  PubMed  CAS  Google Scholar 

  37. Lu W, Tsirka SE (2002) Partial rescue of neural apoptosis in the Lurcher mutant mouse through elimination of tissue plasminogen activator. Development 129:2043–2050

    PubMed  CAS  Google Scholar 

  38. Pennypacker KR, Eidizadeh S, Kassed CA, O’Callaghan JP, Sanberg PR, Willing AE (2000) Expression of fos-related antigen-2 in rat hippocampus after middle cerebral arterial occlusion. Neurosci Lett 289:1–4

    Article  PubMed  CAS  Google Scholar 

  39. Phillips RJS (1960) “Lurcher,” a new gene in linkage group XI of the house mouse. J Genet 57:35–42

    Article  Google Scholar 

  40. Scheff SW, Rabchevsky AG, Fugaccia I, Main JA, Lump JE Jr (2003) Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J Neurotrauma 20:179–193

    Article  PubMed  Google Scholar 

  41. Schmued LC, Albertson C, Slikker W Jr (1997) Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res 751:37–46

    Article  PubMed  CAS  Google Scholar 

  42. Schmued LC, Hopkins KJ (2000) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874:123–130

    Article  PubMed  CAS  Google Scholar 

  43. Schmued LC, Stowers CC, Scallet AC, Xu L (2005) Fluoro-Jade C results in ultra high resolution and contrast labeling of degenerating neurons. Brain Res 1035:24–31

    Article  PubMed  CAS  Google Scholar 

  44. Selimi F, Doughty M, Delhaye-Bouchaud N, Mariani J (2000a) Target-related and intrinsic neuronal death in Lurcher mutant mice are both mediated by caspase-3 activation. J Neurosci 20:992–1000

    CAS  Google Scholar 

  45. Selimi F, Vogel MW, Mariani J (2000b) Bax inactivation in Lurcher mutants rescues cerebellar granule cells but not Purkinje cells or inferior olivary neurons. J Neurosci 20:5339–5345

    CAS  Google Scholar 

  46. Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995

    Article  PubMed  CAS  Google Scholar 

  47. Sternberger LA, Hardy PH Jr, Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry: preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333

    PubMed  CAS  Google Scholar 

  48. Swisher DA, Wilson DB (1977) Cerebellar histogenesis in the Lurcher (Lc) mutant mouse. J Comp Neurol 173:205–218

    Article  PubMed  CAS  Google Scholar 

  49. Thornberry NA, Rosen A, Nicholson DW (1997) Control of apoptosis by proteases. Adv Pharmacol 41:155–177

    Article  PubMed  CAS  Google Scholar 

  50. Toninello A, Salvi M, Mondovi B (2004) Interaction of biologically active amines with mitochondria and their role in the mitochondrial-mediated pathway of apoptosis. Curr Med Chem 11:2349–2374

    PubMed  CAS  Google Scholar 

  51. Vogel MW (2002) Cell death, Bcl-2, Bax, and the cerebellum. Cerebellum 1:277–287

    Article  PubMed  CAS  Google Scholar 

  52. Wetts R, Herrup K (1982a) Interaction of granule, Purkinje and inferior olivary neurons in Lurcher chimaeric mice. I. Qualitative studies. J Embryol Exp Morphol 68:87–98

    CAS  Google Scholar 

  53. Wetts R, Herrup K (1982b) Interaction of granule, Purkinje and inferior olivary neurons in Lurcher chimeric mice. II. Granule cell death. Brain Res 250:358–362

    Article  CAS  Google Scholar 

  54. Wood KA, Dipasquale B, Youle RJ (1993) In situ labeling of granule cells for apoptosis-associated DNA fragmentation reveals different mechanisms of cell loss in developing cerebellum. Neuron 11:621–632

    Article  PubMed  CAS  Google Scholar 

  55. Yue Z, Horton A, Bravin M, DeJager PL, Selimi F, Heintz N (2002) A novel protein complex linking the delta 2 glutamate receptor and autophagy: implications for neurodegeneration in Lurcher mice. Neuron 35:921–933

    Article  PubMed  CAS  Google Scholar 

  56. Zanjani HS, Rondi-Reig L, Vogel MW, Martinou JC, Delhaye-Bouchaud N, Mariani J (1998) Overexpression of a Hu-Bcl-2 gene in Lurcher mutant mice delays Purkinje cell death. C R Acad Sci III 321:633–640

    PubMed  CAS  Google Scholar 

  57. Zanjani HS, Vogel MW, Martinou JC, Delhaye-Bouchaud N, Mariani J (1998) Postnatal expression of Hu-bcl-2 gene in Lurcher mutant mice fails to rescue Purkinje cells but protects inferior olivary neurons from target-related cell death. J Neurosci 18:319–327

    PubMed  CAS  Google Scholar 

  58. Zuo J, De Jager PL, Takahashi KA, Jiang W, Linden DJ, Heintz N (1997) Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 388:769–773

    Article  PubMed  CAS  Google Scholar 

  59. Zweifel LS, Kuruvilla R, Ginty DD (2005) Functions and mechanisms of retrograde neurotrophin signalling. Nat Rev Neurosci 6:615–625

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Ms H. Wolynski for technical assistance and Dr L.C. Schmued for stimulating discussions. This study was supported in part by the Sonnenfeld-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Bäurle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bäurle, J., Kranda, K. & Frischmuth, S. On the variety of cell death pathways in the Lurcher mutant mouse. Acta Neuropathol 112, 691–702 (2006). https://doi.org/10.1007/s00401-006-0137-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-006-0137-x

Keywords

Navigation