Advertisement

Update zum Strahlenschutz bei der Katheterablation von Vorhofflimmern

Update on radiation exposure in catheter ablation of atrial fibrillation

Zusammenfassung

Die in den letzten Jahren gestiegene Anzahl an Katheterablationen von Vorhofflimmern bedeutet eine potenzielle Zunahme der Strahlenbelastung für die Patienten und das medizinische Personal. Erfreulicherweise steht diesem Trend u. a. die Weiterentwicklung nichtfluoroskopischer Methoden zur Kathetervisualisierung, verbunden mit der konsequenten Reduzierung der Durchleuchtungszeit pro Prozedur, entgegen. Da Röntgenstrahlung jedoch auch im Niedrigdosisbereich ernstzunehmende Schäden verursachen kann, sind im Sinne des ALARA-Prinzips („as low as reasonably achievable“) alle möglichen Maßnahmen zu ergreifen, um die Strahlendosis weiter zu reduzieren. Eine signifikante Rolle spielen hier Dosisreduktionsprotokolle mit Niedrigdosiseinstellungen. Diese beinhalten u. a. die Optimierung der Parameter Bildrate pro Sekunde, Pulsdauer, Detektoreingangsdosis und Strahlenaufhärtung. Dieser Review-Artikel fasst den aktuellen Stand der Technik der nichtfluoroskopischen Katheterdarstellung und der Dosisreduktionsprogramme bei der Katheterablation von Vorhofflimmern zusammen.

Abstract

The rising number of catheter ablations of atrial fibrillation increases radiation exposure for both patients and surgeons. Fortunately, this trend is counteracted by the development of measures to reduce total fluoroscopy time using non-fluoroscopic catheter visualization. Since even low-dose radiation can cause serious injury, all options to reduce radiation burden must be utilized (ALARA, “as low as reasonably achievable”). Dose reduction protocols with low-dose settings, which include reduced framerates, pulse duration, detector entrance dose and increased beam hardening, play a decisive role in this regard. This review provides a state-of-the-art summary of non-fluoroscopic catheter visualization and dose reduction protocols for catheter ablation of atrial fibrillation.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. 1.

    Aagaard P, Natale A, Di Biase L (2015) Robotic navigation for catheter ablation: benefits and challenges. Expert Rev Med Devices 12:457–469

  2. 2.

    Attanasio P, Schreiber T, Pieske B et al (2018) Pushing the limits: establishing an ultra-low framerate and antiscatter grid-less radiation protocol for left atrial ablations. Europace 20:604–607

  3. 3.

    Di Biase L, Horton R, Trivedi C et al (2014) Abstract 16237: zero fluoroscopy ablation of atrial fibrillation: a safety and feasibility study. Circulation 130:A16237–A16237

  4. 4.

    Bourier F, Reents T, Ammar-Busch S et al (2016) Evaluation of a new very low dose imaging protocol: feasibility and impact on X‑ray dose levels in electrophysiology procedures. Europace 18:1406–1410

  5. 5.

    Bulava A, Hanis J, Eisenberger M (2015) Catheter ablation of atrial fibrillation using zero-fluoroscopy technique: a randomized trial. Pacing Clin Electrophysiol 38:797–806

  6. 6.

    Cha M‑J, Jo SJ, Cho Y et al (2016) Patient characteristics and the incidence of radiation-induced dermatitis following radiofrequency catheter ablation. Korean Circ J 46:646–653

  7. 7.

    De Buck S, La Gerche A, Ector J et al (2012) Asymmetric collimation can significantly reduce patient radiation dose during pulmonary vein isolation. Europace 14:437–444

  8. 8.

    Deutsche Herzstiftung (2018) Frankfurt am Main. 30. Deutscher Herzbericht 2018

  9. 9.

    Estner HL, Deisenhofer I, Luik A et al (2006) Electrical isolation of pulmonary veins in patients with atrial fibrillation: reduction of fluoroscopy exposure and procedure duration by the use of a non-fluoroscopic navigation system (NavX). Europace 8:583–587

  10. 10.

    Estner HL, Grazia Bongiorni M, Chen J et al (2015) Use of fluoroscopy in clinical electrophysiology in europe: results of the European heart rhythm association survey. Europace 17:1149–1152

  11. 11.

    Ferguson JD (2014) Very low fluoroscopy ablation for atrial fibrillation can be fast and safe. Circulation 7:777–778

  12. 12.

    Germano JJ, Day G, Gregorious D et al (2005) A novel radiation protection drape reduces radiation exposure during fluoroscopy guided electrophysiology procedures. J Invasive Cardiol 17:469–472

  13. 13.

    Haegeli LM, Stutz L, Mohsen M et al (2019) Feasibility of zero or near zero fluoroscopy during catheter ablation procedures. Cardiol J 26:226–232

  14. 14.

    Heidbuchel H, Wittkampf FH, Vano E et al (2014) Practical ways to reduce radiation dose for patients and staff during device implantations and electrophysiological procedures. Europace 16:946–964

  15. 15.

    Hirshfeld JW Jr., Balter S, Brinker JA et al (2004) ACCF/AHA/HRS/SCAI clinical competence statement on physician knowledge to optimize patient safety and image quality in fluoroscopically guided invasive cardiovascular procedures. A report of the American College of Cardiology Foundation/American Heart Association/American College of Physicians Task Force on Clinical Competence and Training. J Am Coll Cardiol 44:2259–2282

  16. 16.

    Jacob S, Donadille L, Maccia C et al (2012) Eye lens radiation exposure to interventional cardiologists: a retrospective assessment of cumulative doses. Radiat Prot Dosimetry 153:282–293

  17. 17.

    König AM, Etzel R, Thomas RP et al (2019) Persönliche Strahlenschutzmittel und Dosimetrie des medizinischen Personals in der interventionellen Radiologie: Aktueller Status und neue Entwicklungen. RöFo 191:512–521

  18. 18.

    Koukorava C, Farah J, Struelens L et al (2014) Efficiency of radiation protection equipment in interventional radiology: a systematic Monte Carlo study of eye lens and whole body doses. J Radiol Prot 34:509–528

  19. 19.

    Kühne M, Knecht S, Mühl A et al (2016) Fluoroscopy-free pulmonary vein isolation in patients with atrial fibrillation and a patent foramen ovale using solely an electroanatomic mapping system. PLoS ONE 11:e148059–e148059

  20. 20.

    Lee JH, Kim J, Kim M et al (2017) Extremely low-frame-rate digital fluoroscopy in catheter ablation of atrial fibrillation: a comparison of 2 versus 4 frame rate. Medicine 96:e7200

  21. 21.

    Mahesh M (2001) Fluoroscopy: patient radiation exposure issues. Radiographics 21:1033–1045

  22. 22.

    Marini M, Martin M, Ravanelli D et al (2019) Extensive use of 3D nonfluoroscopic mapping systems for reducing radiation exposure during catheter ablation procedures: an analysis of 10 years of activity. Biomed Res Int 2019:4217076

  23. 23.

    O’brien B, Balmforth DC, Hunter RJ et al (2017) Fluoroscopy-free AF ablation using transesophageal echocardiography and electroanatomical mapping technology. J Interv Card Electrophysiol 50:235–244

  24. 24.

    Picano E, Piccaluga E, Padovani R et al (2014) Risks related to fluoroscopy radiation associated with electrophysiology procedures. J Atr Fibrillation 7:77–81

  25. 25.

    Picano E, Vano E (2011) The radiation issue in cardiology: the time for action is now. Cardiovasc Ultrasound 9:35–35

  26. 26.

    Picano E, Vañó E, Rehani MM et al (2014) The appropriate and justified use of medical radiation in cardiovascular imaging: a position document of the ESC associations of cardiovascular imaging, percutaneous cardiovascular interventions and electrophysiology. Eur Heart J 35:665–672

  27. 27.

    Platz Batista da Silva N, Becker C (2015) Streustrahlenraster – (k)ein kurzer Überblick. Radiopraxis 8:197–210

  28. 28.

    Reddy VY, Morales G, Ahmed H et al (2010) Catheter ablation of atrial fibrillation without the use of fluoroscopy. Heart Rhythm 7:1644–1653

  29. 29.

    Reissmann B, Maurer T, Wohlmuth P et al (2018) Significant reduction of radiation exposure in cryoballoon-based pulmonary vein isolation. Europace 20:608–613

  30. 30.

    Roguin A, Goldstein J, Bar O et al (2013) Brain and neck tumors among physicians performing interventional procedures. Am J Cardiol 111:1368–1372

  31. 31.

    Rubesch-Kutemeyer V, Molatta S, Vogt J et al (2017) Reduction of radiation exposure in cryoballoon ablation procedures: a single-centre study applying intracardiac echocardiography and other radioprotective measures. Europace 19:947–953

  32. 32.

    Sauer R, Müller RG (2006) Strahlenschutz, 3. Aufl. Radiologie. Urban & Fischer, München, S 387–397

  33. 33.

    Savage C, Seale TM IV, Shaw CJ et al (2013) Evaluation of a suspended personal radiation protection system vs. conventional apron and shields in clinical Interventional procedures. Open J Radiol 03:143–151

  34. 34.

    Schmidt M, Tesche C, Hapfelmeier A et al (2019) Significant radiation dose reduction using a novel angiography platform in patients undergoing cryoballoon pulmonary vein isolation. J Thorac Imaging. https://doi.org/10.1097/RTI.0000000000000441

  35. 35.

    Schneider R, Lauschke J, Schneider C et al (2015) Reduction of radiation exposure during ablation of atrial fibrillation. Herz 40:883–891

  36. 36.

    Skripochnik E, Loh SA (2017) Fluoroscopy time is not accurate as a surrogate for radiation exposure. Vascular 25:466–471

  37. 37.

    Smith IR, Stafford WJ, Hayes JR et al (2016) Radiation risk reduction in cardiac electrophysiology through use of a gridless imaging technique. Europace 18:121–130

  38. 38.

    Sommer P, Bertagnolli L, Kircher S et al (2018) Safety profile of near-zero fluoroscopy atrial fibrillation ablation with non-fluoroscopic catheter visualization: experience from 1000 consecutive procedures. Europace 20(12):1952–1958. https://doi.org/10.1093/europace/eux378

  39. 39.

    Stewart FA, Akleyev AV, Hauer-Jensen M et al (2012) ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs—threshold doses for tissue reactions in a radiation protection context. Ann ICRP. https://doi.org/10.1016/j.icrp.2012.02.001

Download references

Author information

Correspondence to Tobias Schreiber.

Ethics declarations

Interessenkonflikt

T. Schreiber, N. Kähler, V. Tscholl, P. Nagel, U. Landmesser, M. Huemer und P. Attanasio geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien. Für Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts, über die Patienten zu identifizieren sind, liegt von ihnen und/oder ihren gesetzlichen Vertretern eine schriftliche Einwilligung vor.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schreiber, T., Kähler, N., Tscholl, V. et al. Update zum Strahlenschutz bei der Katheterablation von Vorhofflimmern. Herzschr Elektrophys (2019) doi:10.1007/s00399-019-00660-z

Download citation

Schlüsselwörter

  • Herzrhythmusstörung
  • Pulmonalvenenisolation
  • Fluoroskopie
  • Strahlenschäden
  • Dosisreduktion

Keywords

  • Cardiac arrhythmia
  • Pulmonary vein isolation
  • Fluoroscopy
  • Radiation damages
  • Dose reduction