Skip to main content

Advertisement

Log in

Gentherapie der Transplantatvaskulopathie

Gene therapy for transplant vasculopathy

  • Stand der Wissenschaft
  • Published:
Zeitschrift für Herz-,Thorax- und Gefäßchirurgie Aims and scope

Zusammenfassung

Das Forschungsprojekt befasste sich mit der gentherapeutischen Behandlung der Transplantatvaskulopathie (TVP). Unter Verwendung des heterotopen Aortentransplantationsmodells der Maus konnte ein suffizientes Modell etabliert werden, das im translationalen Sinne die Ex-vivo-Behandlung der zu transplantierenden Aortenfragmente erlaubt. Diesbezüglich wurden drei Ansätze verfolgt: 1) Durch die Neutralisierung des Transkriptionsfaktors Aktivatorprotein 1 (AP-1) mit einem DNA-Haarnadel-Molekül (Decoy-Oligodesoxynukleotid, dODN) konnte nach 30 Tagen eine signifikante Reduktion der Intimahyperplasie nachgewiesen werden. Die Migration glatter Muskelzellen und die Expression von Matrix-Metalloproteinasen (MMP) werden u. a. durch AP‑1 induziert. 2) Es folgte die Implementierung eines RNA-AP-1-Decoy-Oligonukleotids (dON), das nach Transduktion der Transplantate mit einem nichtpathogenen adenoassoziierten Virus (AAV) langfristig in den Zellen exprimiert wurde. In diesem Ansatz konnte erneut eine signifikante Reduktion der Intimahyperplasie und eine signifikante Reduktion von VCAM‑1, Makrophageninfiltration und von CD4-positiven Zellen sowie eine reduzierte MMP-9-Aktivität nachweisen werden. 3) Durch die AAV-vermittelte Überexpression des natürlichen MMP-Inhibitors TIMP‑1 gelang es, die MMP-Aktivität zu hemmen und dadurch die TVP zu reduzieren. Zudem konnten eine verbesserte Barriereeigenschaft des Endothels sowohl in vitro als auch in vivo nachgewiesen werden.

Abstract

This research project addressed the gene therapy treatment of transplant vasculopathy (TVP). Using the heterotopic mouse aortic transplantation model, a sufficient model was established that allowed to treat in a translational sense the aortic fragments to be transplanted ex vivo. In this respect three approaches followed: 1) by neutralizing the transcription factor activator protein 1 (AP-1) with a DNA hairpin molecule (decoy oligodeoxynucleotide, dODN), a significant reduction of intimal hyperplasia after 30 days was demonstrated. AP‑1 is a transcription factor that induces smooth muscle cell migration and expression of matrix metalloproteinases (MMP), among others. 2) It followed the development of an RNA AP‑1 decoy oligonucleotide (dON) that showed long-term expression in the cells after the transduction of the grafts with a nonpathogenic adeno-associated virus (AAV). In this approach, again a significant reduction in intimal hyperplasia and a significant reduction in VCAM‑1, macrophage infiltration, and CD4 positive cells as well as reduced MMP‑9 activity were demonstrated. 3) Through AAV-mediated overexpression of the natural MMP inhibitor TIMP‑1, it was possible to inhibit MMP activity and thereby reduce TVP. In addition, an improved barrier function of endothelial cells in vitro and in vivo was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Mehra MR, Crespo-Leiro MG, Dipchand A et al (2010) International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010. J Heart Lung Transplant 29:717–727

    Article  Google Scholar 

  2. Kummer L, Zaradzki M, Vijayan V et al (2020) Vascular signaling in allogenic solid organ transplantation—the role of endothelial cells. Front Physiol 11:443

    Article  Google Scholar 

  3. Zhao Y, Qiao X, Wang LH et al (2016) Matrix metalloproteinase 9 induces endothelial-mesenchymal transition via Notch activation in human kidney glomerular endothelial cells. BMC Cell Biol 17:21

    Article  Google Scholar 

  4. Viedt C, Vogel J, Athanasiou T et al (2002) Monocyte chemoattractant protein‑1 induces proliferation and interleukin‑6 production in human smooth muscle cells by differential activation of nuclear factor-kappaB and activator protein‑1. Arterioscler Thromb Vasc Biol 22:914–920

    Article  CAS  Google Scholar 

  5. Rao GN, Katki KA, Madamanchi NR, Wu Y, Birrer MJ (1999) JunB forms the majority of the AP‑1 complex and is a target for redox regulation by receptor tyrosine kinase and G protein-coupled receptor agonists in smooth muscle cells. J Biol Chem 274:6003–6010

    Article  CAS  Google Scholar 

  6. Buchwald AB, Wagner AH, Webel C, Hecker M (2002) Decoy oligodeoxynucleotide against activator protein‑1 reduces neointimal proliferation after coronary angioplasty in hypercholesterolemic minipigs. J Am Coll Cardiol 39:732–738

    Article  CAS  Google Scholar 

  7. Hecker M, Wagner AH (2017) Transcription factor decoy technology: a therapeutic update. Biochem Pharmacol 144:29–34

    Article  CAS  Google Scholar 

  8. Kramer F, Milting H (2011) Novel biomarkers in human terminal heart failure and under mechanical circulatory support. Biomarkers 16(Suppl 1):S31–S41

    Article  CAS  Google Scholar 

  9. Calcedo R, Wilson JM (2013) Humoral immune response to AAV. Front Immunol 4:341

    Article  Google Scholar 

  10. Varadi K, Michelfelder S, Korff T et al (2012) Novel random peptide libraries displayed on AAV serotype 9 for selection of endothelial cell-directed gene transfer vectors. Gene Ther 19:800–809

    Article  CAS  Google Scholar 

  11. Sun H, Valdivia LA, Subbotin V et al (1998) Improved surgical technique for the establishment of a murine model of aortic transplantation. Microsurgery 18:368–371

    Article  CAS  Google Scholar 

  12. Arif R, Franz M, Remes A et al (2019) Reduction of transplant vasculopathy by intraoperative nucleic acid-based therapy in a mouse aortic allograft model. Thorac Cardiovasc Surg 67:503–512

    Article  Google Scholar 

  13. Remes A, Franz M, Mohr F et al (2019) AAV-mediated expression of AP-1-neutralizing RNA decoy oligonucleotides attenuates transplant vasculopathy in mouse aortic allografts. Mol Ther Methods Clin Dev 15:246–256

    Article  CAS  Google Scholar 

  14. Remes A, Franz M, Zaradzki M et al (2020) AAV-mediated TIMP‑1 overexpression in aortic tissue reduces the severity of allograft vasculopathy in mice. J Heart Lung Transplant 39:389–398

    Article  Google Scholar 

  15. Hölschermann H, Stadlbauer TH, Wagner AH et al (2006) STAT‑1 and AP‑1 decoy oligonucleotide therapy delays acute rejection and prolongs cardiac allograft survival. Cardiovasc Res 71:527–536

    Article  Google Scholar 

  16. Stadlbauer TH, Wagner AH, Hölschermann H et al (2008) AP‑1 and STAT‑1 decoy oligodeoxynucleotides attenuate transplant vasculopathy in rat cardiac allografts. Cardiovasc Res 79:698–705

    Article  CAS  Google Scholar 

  17. Arif R, Zaradzki M, Remes A et al (2017) AP‑1 oligodeoxynucleotides reduce aortic elastolysis in a murine model of marfan syndrome. Mol Ther Nucleic Acids 9:69–79

    Article  CAS  Google Scholar 

  18. Uehara M, Solhjou Z, Banouni N et al (2018) Ischemia augments alloimmune injury through IL-6-driven CD4(+) alloreactivity. Sci Rep 8:2461

    Article  Google Scholar 

  19. Chen Y, McMicken HW (2003) Intracellular production of DNA enzyme by a novel single-stranded DNA expression vector. Gene Ther 10:1776–1780

    Article  CAS  Google Scholar 

  20. Burger K, Gullerova M (2015) Swiss army knives: non-canonical functions of nuclear Drosha and Dicer. Nat Rev Mol Cell Biol 16:417–430

    Article  CAS  Google Scholar 

  21. Pober JS, Jane-wit D, Qin L, Tellides G (2014) Interacting mechanisms in the pathogenesis of cardiac allograft vasculopathy. Arterioscler Thromb Vasc Biol 34:1609–1614

    Article  CAS  Google Scholar 

  22. Wyburn KR, Jose MD, Wu H, Atkins RC, Chadban SJ (2005) The role of macrophages in allograft rejection. Transplantation 80:1641–1647

    Article  Google Scholar 

  23. Lee I, Wang L, Wells AD et al (2003) Blocking the monocyte chemoattractant protein-1/CCR2 chemokine pathway induces permanent survival of islet allografts through a programmed death‑1 ligand-1-dependent mechanism. J Immunol 171:6929–6935

    Article  CAS  Google Scholar 

  24. Yang J, Reutzel-Selke A, Steier C et al (2003) Targeting of macrophage activity by adenovirus-mediated intragraft overexpression of TNFRp55-Ig, IL-12p40, and vIL-10 ameliorates adenovirus-mediated chronic graft injury, whereas stimulation of macrophages by overexpression of IFN-gamma accelerates chronic graft injury in a rat renal allograft model. J Am Soc Nephrol 14:214–225

    Article  CAS  Google Scholar 

  25. Ahmad M, Theofanidis P, Medford RM (1998) Role of activating protein‑1 in the regulation of the vascular cell adhesion molecule‑1 gene expression by tumor necrosis factor-alpha. J Biol Chem 273:4616–4621

    Article  CAS  Google Scholar 

  26. Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6:508–519

    Article  CAS  Google Scholar 

  27. Berceli SA, Jiang Z, Klingman NV et al (2004) Differential expression and activity of matrix metalloproteinases during flow-modulated vein graft remodeling. J Vasc Surg 39:1084–1090

    Article  Google Scholar 

  28. Hasegawa H, Senga T, Ito S, Iwamoto T, Hamaguchi M (2009) A role for AP‑1 in matrix metalloproteinase production and invadopodia formation of v‑Crk-transformed cells. Exp Cell Res 315:1384–1392

    Article  CAS  Google Scholar 

  29. Hareendran S, Balakrishnan B, Sen D, Kumar S, Srivastava A, Jayandharan GR (2013) Adeno-associated virus (AAV) vectors in gene therapy: immune challenges and strategies to circumvent them. Rev Med Virol 23:399–413

    Article  CAS  Google Scholar 

  30. Tse LV, Moller-Tank S, Asokan A (2015) Strategies to circumvent humoral immunity to adeno-associated viral vectors. Expert Opin Biol Ther 15:845–855

    Article  CAS  Google Scholar 

  31. Ramirez Correa GA, Zacchigna S, Arsic N et al (2004) Potent inhibition of arterial intimal hyperplasia by TIMP1 gene transfer using AAV vectors. Mol Ther 9:876–884

    Article  CAS  Google Scholar 

  32. Dollery CM, Humphries SE, McClelland A, Latchman DS, McEwan JR (1999) Expression of tissue inhibitor of matrix metalloproteinases 1 by use of an adenoviral vector inhibits smooth muscle cell migration and reduces neointimal hyperplasia in the rat model of vascular balloon injury. Circulation 99:3199–3205

    Article  CAS  Google Scholar 

  33. Seppelt PC, Schwill S, Weymann A et al (2016) Loss of endothelial barrier in Marfan mice (mgR/mgR) results in severe inflammation after adenoviral gene therapy. PLoS ONE 11:e148012

    Article  Google Scholar 

  34. Tang X, Di X, Liu Y (2017) Protective effects of Donepezil against endothelial permeability. Eur J Pharmacol 811:60–65

    Article  CAS  Google Scholar 

  35. Remes A (2019) Therapeutic transcription factor decoy oligodeoxynucleotides for Marfan syndrome and heart failure. Dissertation. Universität Heidelberg, Heidelberg https://doi.org/10.11588/heidok.00026157

    Book  Google Scholar 

Download references

Förderung

Das Projekt wurde von der Dietmar-Hopp-Stiftung (Projektnummer 23011198) gefördert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas H. Wagner.

Ethics declarations

Interessenkonflikt

R. Arif, K. Kallenbach, O.J. Müller und A.H. Wagner geben an, dass kein Interessenkonflikt besteht. Alle Autoren haben zur Entstehung des Manuskripts beigetragen und sind mit dessen Veröffentlichung einverstanden.

Alle nationalen Richtlinien zur Haltung und zum Umgang mit Labortieren wurden eingehalten, und die notwendigen Zustimmungen der zuständigen Behörden liegen vor.

Additional information

PD Dr. med. Rawa Arif wurde für seine Forschungen „Methoden zur Prävention der Transplantatvaskulopathie“ 2021 mit dem Franz J. Köhler-Preis der Deutschen Gesellschaft für Thorax‑, Herz- und Gefäßchirurgie (DGTHG) ausgezeichnet. Der Beitrag ist eine Zusammenfassung der Originalarbeiten: [12,13,14].

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arif, R., Kallenbach, K., Müller, O.J. et al. Gentherapie der Transplantatvaskulopathie. Z Herz- Thorax- Gefäßchir 36, 328–333 (2022). https://doi.org/10.1007/s00398-022-00535-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00398-022-00535-5

Schlüsselwörter

Keywords

Navigation